zr掺杂Ti3C2和Ti3CN MXenes高效析氢反应的电子结构工程

IF 2.8 3区 物理与天体物理 Q2 PHYSICS, CONDENSED MATTER
Shrestha Dutta, Rudra Banerjee
{"title":"zr掺杂Ti3C2和Ti3CN MXenes高效析氢反应的电子结构工程","authors":"Shrestha Dutta,&nbsp;Rudra Banerjee","doi":"10.1016/j.physb.2025.417148","DOIUrl":null,"url":null,"abstract":"<div><div>Hydrogen production via the Hydrogen Evolution Reaction (HER) is crucial for sustainable energy, but its reliance on expensive Pt-based catalysts limits scalability. Here, we investigate the catalytic performance of Zr-doped Ti<sub>3</sub>C<sub>2</sub> and Ti<sub>3</sub>CN MXenes using first-principles density functional theory (DFT). Our results show that Zr doping at 3% and 7% significantly enhances HER activity by reducing the work function to the optimal range of 3.5–4.5 eV and achieving near-zero Gibbs free energy (<span><math><mrow><mo>|</mo><mi>Δ</mi><msub><mrow><mi>G</mi></mrow><mrow><msup><mrow><mi>H</mi></mrow><mrow><mo>∗</mo></mrow></msup></mrow></msub><mo>|</mo></mrow></math></span>= 0.18–0.16 eV), ideal for efficient hydrogen adsorption and desorption. Bader charge analysis reveals substantial electron accumulation at Zr and N sites, facilitating charge transfer and improving catalytic performance. These findings establish Zr-doped MXenes as cost-effective, high-performance alternatives to noble metal catalysts, offering a scalable pathway toward green hydrogen production and next-generation electrocatalysts.</div></div>","PeriodicalId":20116,"journal":{"name":"Physica B-condensed Matter","volume":"707 ","pages":"Article 417148"},"PeriodicalIF":2.8000,"publicationDate":"2025-03-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Electronic structure engineering of Zr-doped Ti3C2 and Ti3CN MXenes for efficient hydrogen evolution reaction\",\"authors\":\"Shrestha Dutta,&nbsp;Rudra Banerjee\",\"doi\":\"10.1016/j.physb.2025.417148\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Hydrogen production via the Hydrogen Evolution Reaction (HER) is crucial for sustainable energy, but its reliance on expensive Pt-based catalysts limits scalability. Here, we investigate the catalytic performance of Zr-doped Ti<sub>3</sub>C<sub>2</sub> and Ti<sub>3</sub>CN MXenes using first-principles density functional theory (DFT). Our results show that Zr doping at 3% and 7% significantly enhances HER activity by reducing the work function to the optimal range of 3.5–4.5 eV and achieving near-zero Gibbs free energy (<span><math><mrow><mo>|</mo><mi>Δ</mi><msub><mrow><mi>G</mi></mrow><mrow><msup><mrow><mi>H</mi></mrow><mrow><mo>∗</mo></mrow></msup></mrow></msub><mo>|</mo></mrow></math></span>= 0.18–0.16 eV), ideal for efficient hydrogen adsorption and desorption. Bader charge analysis reveals substantial electron accumulation at Zr and N sites, facilitating charge transfer and improving catalytic performance. These findings establish Zr-doped MXenes as cost-effective, high-performance alternatives to noble metal catalysts, offering a scalable pathway toward green hydrogen production and next-generation electrocatalysts.</div></div>\",\"PeriodicalId\":20116,\"journal\":{\"name\":\"Physica B-condensed Matter\",\"volume\":\"707 \",\"pages\":\"Article 417148\"},\"PeriodicalIF\":2.8000,\"publicationDate\":\"2025-03-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Physica B-condensed Matter\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0921452625002650\",\"RegionNum\":3,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"PHYSICS, CONDENSED MATTER\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physica B-condensed Matter","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0921452625002650","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, CONDENSED MATTER","Score":null,"Total":0}
引用次数: 0

摘要

通过析氢反应(HER)制氢对可持续能源至关重要,但其对昂贵的pt基催化剂的依赖限制了其可扩展性。本文采用第一性原理密度泛函理论(DFT)研究了zr掺杂Ti3C2和Ti3CN MXenes的催化性能。结果表明,3%和7%的Zr掺杂显著提高了HER活性,使功函数降低到3.5-4.5 eV的最佳范围,并实现了接近零的吉布斯自由能(|ΔGH∗|= 0.18-0.16 eV),是高效吸附和解吸氢的理想选择。Bader电荷分析表明,在Zr和N位点有大量的电子积累,促进了电荷转移,提高了催化性能。这些发现表明,zr掺杂MXenes是贵金属催化剂的经济高效替代品,为绿色制氢和下一代电催化剂提供了可扩展的途径。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Electronic structure engineering of Zr-doped Ti3C2 and Ti3CN MXenes for efficient hydrogen evolution reaction
Hydrogen production via the Hydrogen Evolution Reaction (HER) is crucial for sustainable energy, but its reliance on expensive Pt-based catalysts limits scalability. Here, we investigate the catalytic performance of Zr-doped Ti3C2 and Ti3CN MXenes using first-principles density functional theory (DFT). Our results show that Zr doping at 3% and 7% significantly enhances HER activity by reducing the work function to the optimal range of 3.5–4.5 eV and achieving near-zero Gibbs free energy (|ΔGH|= 0.18–0.16 eV), ideal for efficient hydrogen adsorption and desorption. Bader charge analysis reveals substantial electron accumulation at Zr and N sites, facilitating charge transfer and improving catalytic performance. These findings establish Zr-doped MXenes as cost-effective, high-performance alternatives to noble metal catalysts, offering a scalable pathway toward green hydrogen production and next-generation electrocatalysts.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Physica B-condensed Matter
Physica B-condensed Matter 物理-物理:凝聚态物理
CiteScore
4.90
自引率
7.10%
发文量
703
审稿时长
44 days
期刊介绍: Physica B: Condensed Matter comprises all condensed matter and material physics that involve theoretical, computational and experimental work. Papers should contain further developments and a proper discussion on the physics of experimental or theoretical results in one of the following areas: -Magnetism -Materials physics -Nanostructures and nanomaterials -Optics and optical materials -Quantum materials -Semiconductors -Strongly correlated systems -Superconductivity -Surfaces and interfaces
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信