Musielak-Orlicz空间中非线性抛物方程周期问题的变分方法

IF 1.8 3区 数学 Q1 MATHEMATICS, APPLIED
A. Nowakowski , E. Öztürk
{"title":"Musielak-Orlicz空间中非线性抛物方程周期问题的变分方法","authors":"A. Nowakowski ,&nbsp;E. Öztürk","doi":"10.1016/j.nonrwa.2025.104375","DOIUrl":null,"url":null,"abstract":"<div><div>We discuss the periodic problem for a nonlinear parabolic equation of the form: <span><span><span>(1)</span><span><math><mrow><msub><mrow><mi>x</mi></mrow><mrow><mi>t</mi></mrow></msub><mrow><mo>(</mo><mi>t</mi><mo>)</mo></mrow><mo>−</mo><mi>A</mi><mi>x</mi><mrow><mo>(</mo><mi>t</mi><mo>)</mo></mrow><mo>+</mo><msub><mrow><mi>H</mi></mrow><mrow><mi>x</mi></mrow></msub><mfenced><mrow><mi>x</mi><mrow><mo>(</mo><mi>t</mi><mo>)</mo></mrow></mrow></mfenced><mo>−</mo><msub><mrow><mi>Q</mi></mrow><mrow><mi>x</mi></mrow></msub><mrow><mo>(</mo><mi>x</mi><mrow><mo>(</mo><mi>t</mi><mo>)</mo></mrow><mo>)</mo></mrow><mo>=</mo><mn>0</mn></mrow></math></span></span></span>where <span><math><mi>A</mi></math></span> is a nonlinear operator in a generalized modular space; <span><math><mi>H</mi></math></span> and <span><math><mi>Q</mi></math></span> are convex functionals. We derive a new variational method based on the Fenchel–Young conjugacy to prove the existence of periodic solutions. Next, we apply the abstract result to a nonlinear parabolic equation in Musielak–Orlicz spaces.</div></div>","PeriodicalId":49745,"journal":{"name":"Nonlinear Analysis-Real World Applications","volume":"85 ","pages":"Article 104375"},"PeriodicalIF":1.8000,"publicationDate":"2025-03-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Variational approach to the periodic problem for a nonlinear parabolic equation in Musielak–Orlicz spaces\",\"authors\":\"A. Nowakowski ,&nbsp;E. Öztürk\",\"doi\":\"10.1016/j.nonrwa.2025.104375\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>We discuss the periodic problem for a nonlinear parabolic equation of the form: <span><span><span>(1)</span><span><math><mrow><msub><mrow><mi>x</mi></mrow><mrow><mi>t</mi></mrow></msub><mrow><mo>(</mo><mi>t</mi><mo>)</mo></mrow><mo>−</mo><mi>A</mi><mi>x</mi><mrow><mo>(</mo><mi>t</mi><mo>)</mo></mrow><mo>+</mo><msub><mrow><mi>H</mi></mrow><mrow><mi>x</mi></mrow></msub><mfenced><mrow><mi>x</mi><mrow><mo>(</mo><mi>t</mi><mo>)</mo></mrow></mrow></mfenced><mo>−</mo><msub><mrow><mi>Q</mi></mrow><mrow><mi>x</mi></mrow></msub><mrow><mo>(</mo><mi>x</mi><mrow><mo>(</mo><mi>t</mi><mo>)</mo></mrow><mo>)</mo></mrow><mo>=</mo><mn>0</mn></mrow></math></span></span></span>where <span><math><mi>A</mi></math></span> is a nonlinear operator in a generalized modular space; <span><math><mi>H</mi></math></span> and <span><math><mi>Q</mi></math></span> are convex functionals. We derive a new variational method based on the Fenchel–Young conjugacy to prove the existence of periodic solutions. Next, we apply the abstract result to a nonlinear parabolic equation in Musielak–Orlicz spaces.</div></div>\",\"PeriodicalId\":49745,\"journal\":{\"name\":\"Nonlinear Analysis-Real World Applications\",\"volume\":\"85 \",\"pages\":\"Article 104375\"},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2025-03-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nonlinear Analysis-Real World Applications\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1468121825000616\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nonlinear Analysis-Real World Applications","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1468121825000616","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

讨论了一类非线性抛物方程的周期问题,其形式为:(1)xt(t)−Ax(t)+Hxx(t)−Qx(x(t))=0,其中a是广义模空间中的非线性算子;H和Q是凸泛函。我们提出了一种新的基于fenchell - young共轭的变分方法来证明周期解的存在性。然后,我们将抽象结果应用于Musielak-Orlicz空间中的非线性抛物方程。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Variational approach to the periodic problem for a nonlinear parabolic equation in Musielak–Orlicz spaces
We discuss the periodic problem for a nonlinear parabolic equation of the form: (1)xt(t)Ax(t)+Hxx(t)Qx(x(t))=0where A is a nonlinear operator in a generalized modular space; H and Q are convex functionals. We derive a new variational method based on the Fenchel–Young conjugacy to prove the existence of periodic solutions. Next, we apply the abstract result to a nonlinear parabolic equation in Musielak–Orlicz spaces.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
3.80
自引率
5.00%
发文量
176
审稿时长
59 days
期刊介绍: Nonlinear Analysis: Real World Applications welcomes all research articles of the highest quality with special emphasis on applying techniques of nonlinear analysis to model and to treat nonlinear phenomena with which nature confronts us. Coverage of applications includes any branch of science and technology such as solid and fluid mechanics, material science, mathematical biology and chemistry, control theory, and inverse problems. The aim of Nonlinear Analysis: Real World Applications is to publish articles which are predominantly devoted to employing methods and techniques from analysis, including partial differential equations, functional analysis, dynamical systems and evolution equations, calculus of variations, and bifurcations theory.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信