Csaba Török , Juraj Hudák , Viktor Pristaš , Lubomir Antoni
{"title":"三次样条插值和数据平滑的显式形式","authors":"Csaba Török , Juraj Hudák , Viktor Pristaš , Lubomir Antoni","doi":"10.1016/j.amc.2025.129411","DOIUrl":null,"url":null,"abstract":"<div><div>We express the interpolating cubic splines of class <span><math><msup><mrow><mi>C</mi></mrow><mrow><mn>2</mn></mrow></msup></math></span> in their new, explicit forms. We construct the desired forms, the spline's Hermitian and B-spline representations for both equidistant and arbitrary nodes. During this process we demonstrate an innovative way to compute the inverse of a special class of tridiagonal matrices. Afterward, we propose the corresponding interpolating spline based linear regression models with easily interpretable coefficients suitable for smoothing data of complex structures.</div></div>","PeriodicalId":55496,"journal":{"name":"Applied Mathematics and Computation","volume":"500 ","pages":"Article 129411"},"PeriodicalIF":3.5000,"publicationDate":"2025-03-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Explicit forms of interpolating cubic splines and data smoothing\",\"authors\":\"Csaba Török , Juraj Hudák , Viktor Pristaš , Lubomir Antoni\",\"doi\":\"10.1016/j.amc.2025.129411\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>We express the interpolating cubic splines of class <span><math><msup><mrow><mi>C</mi></mrow><mrow><mn>2</mn></mrow></msup></math></span> in their new, explicit forms. We construct the desired forms, the spline's Hermitian and B-spline representations for both equidistant and arbitrary nodes. During this process we demonstrate an innovative way to compute the inverse of a special class of tridiagonal matrices. Afterward, we propose the corresponding interpolating spline based linear regression models with easily interpretable coefficients suitable for smoothing data of complex structures.</div></div>\",\"PeriodicalId\":55496,\"journal\":{\"name\":\"Applied Mathematics and Computation\",\"volume\":\"500 \",\"pages\":\"Article 129411\"},\"PeriodicalIF\":3.5000,\"publicationDate\":\"2025-03-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applied Mathematics and Computation\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0096300325001389\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Mathematics and Computation","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0096300325001389","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
Explicit forms of interpolating cubic splines and data smoothing
We express the interpolating cubic splines of class in their new, explicit forms. We construct the desired forms, the spline's Hermitian and B-spline representations for both equidistant and arbitrary nodes. During this process we demonstrate an innovative way to compute the inverse of a special class of tridiagonal matrices. Afterward, we propose the corresponding interpolating spline based linear regression models with easily interpretable coefficients suitable for smoothing data of complex structures.
期刊介绍:
Applied Mathematics and Computation addresses work at the interface between applied mathematics, numerical computation, and applications of systems – oriented ideas to the physical, biological, social, and behavioral sciences, and emphasizes papers of a computational nature focusing on new algorithms, their analysis and numerical results.
In addition to presenting research papers, Applied Mathematics and Computation publishes review articles and single–topics issues.