新型等摩尔Co3-4x(MnxFexNixCrx)O4 (x = 0.05, 0.10和0.15)纳米粒子的微观结构、电/介电和磁性特征的综合研究

IF 5.3 3区 材料科学 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY
M.A. Almessiere , A. Baykal , Y. Slimani , Sagar E. Shirsath , M.A. Gondal , A. Ali , A. Mihmanlı
{"title":"新型等摩尔Co3-4x(MnxFexNixCrx)O4 (x = 0.05, 0.10和0.15)纳米粒子的微观结构、电/介电和磁性特征的综合研究","authors":"M.A. Almessiere ,&nbsp;A. Baykal ,&nbsp;Y. Slimani ,&nbsp;Sagar E. Shirsath ,&nbsp;M.A. Gondal ,&nbsp;A. Ali ,&nbsp;A. Mihmanlı","doi":"10.1016/j.materresbull.2025.113432","DOIUrl":null,"url":null,"abstract":"<div><div>The main goal of this study is to understand the influence of Mn, Ni, Fe and Cr multi substitution on structural, dielectric, and magnetic properties of Co<sub>3</sub>O<sub>4</sub> nanoparticles (NPs), which have been synthesized via sol-gel synthesis. The results revealed the successfully synthesized multi-substitution spinel oxides through X-ray powder patterns. D<sub>XRD</sub> are between 14 and 31 nm. AC conductivity exhibited strong temperature (<em>T</em>) and frequency (<em>f</em>) dependence, reflecting mechanisms dominated by interfacial polarization and polaronic conduction. The dielectric constant demonstrated a Maxwell-Wagner type response, influenced by grain boundary polarization and localized charge carriers. Magnetic measurements revealed the coexistence of ferromagnetic (or ferrimagnetic) and antiferromagnetic (or paramagnetic) contributions, with an enhancement in ferromagnetic behaviour attributed to the non-compensated spins, finite size effects, and higher magnetic moments of dopant ions. The coercivity, magnetization, and remanent magnetization were found to increase with the rise in the concentration of Fe, Mn, Ni, and Cr doping ions.</div></div>","PeriodicalId":18265,"journal":{"name":"Materials Research Bulletin","volume":"188 ","pages":"Article 113432"},"PeriodicalIF":5.3000,"publicationDate":"2025-03-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Comprehensive investigation on microstructure, electrical/dielectric and magnetic features of novel equimolar Co3-4x(MnxFexNixCrx)O4 (x = 0.05, 0.10, and 0.15) nanoparticles\",\"authors\":\"M.A. Almessiere ,&nbsp;A. Baykal ,&nbsp;Y. Slimani ,&nbsp;Sagar E. Shirsath ,&nbsp;M.A. Gondal ,&nbsp;A. Ali ,&nbsp;A. Mihmanlı\",\"doi\":\"10.1016/j.materresbull.2025.113432\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The main goal of this study is to understand the influence of Mn, Ni, Fe and Cr multi substitution on structural, dielectric, and magnetic properties of Co<sub>3</sub>O<sub>4</sub> nanoparticles (NPs), which have been synthesized via sol-gel synthesis. The results revealed the successfully synthesized multi-substitution spinel oxides through X-ray powder patterns. D<sub>XRD</sub> are between 14 and 31 nm. AC conductivity exhibited strong temperature (<em>T</em>) and frequency (<em>f</em>) dependence, reflecting mechanisms dominated by interfacial polarization and polaronic conduction. The dielectric constant demonstrated a Maxwell-Wagner type response, influenced by grain boundary polarization and localized charge carriers. Magnetic measurements revealed the coexistence of ferromagnetic (or ferrimagnetic) and antiferromagnetic (or paramagnetic) contributions, with an enhancement in ferromagnetic behaviour attributed to the non-compensated spins, finite size effects, and higher magnetic moments of dopant ions. The coercivity, magnetization, and remanent magnetization were found to increase with the rise in the concentration of Fe, Mn, Ni, and Cr doping ions.</div></div>\",\"PeriodicalId\":18265,\"journal\":{\"name\":\"Materials Research Bulletin\",\"volume\":\"188 \",\"pages\":\"Article 113432\"},\"PeriodicalIF\":5.3000,\"publicationDate\":\"2025-03-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Materials Research Bulletin\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0025540825001400\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Research Bulletin","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0025540825001400","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

本研究的主要目的是了解Mn、Ni、Fe和Cr多取代对溶胶-凝胶合成的Co3O4纳米颗粒(NPs)的结构、介电和磁性能的影响。结果通过x射线粉末图显示了成功合成的多取代尖晶石氧化物。DXRD在14 ~ 31 nm之间。交流电导率表现出强烈的温度(T)和频率(f)依赖性,反映了以界面极化和极极性传导为主的机制。介电常数受晶界极化和局域载流子的影响,表现出麦克斯韦-瓦格纳型响应。磁测量揭示了铁磁(或亚铁磁)和反铁磁(或顺磁)贡献的共存,铁磁行为的增强归因于非补偿自旋、有限尺寸效应和掺杂离子的高磁矩。随着Fe、Mn、Ni和Cr掺杂离子浓度的增加,材料的矫顽力、磁化强度和剩余磁化强度均增大。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Comprehensive investigation on microstructure, electrical/dielectric and magnetic features of novel equimolar Co3-4x(MnxFexNixCrx)O4 (x = 0.05, 0.10, and 0.15) nanoparticles

Comprehensive investigation on microstructure, electrical/dielectric and magnetic features of novel equimolar Co3-4x(MnxFexNixCrx)O4 (x = 0.05, 0.10, and 0.15) nanoparticles
The main goal of this study is to understand the influence of Mn, Ni, Fe and Cr multi substitution on structural, dielectric, and magnetic properties of Co3O4 nanoparticles (NPs), which have been synthesized via sol-gel synthesis. The results revealed the successfully synthesized multi-substitution spinel oxides through X-ray powder patterns. DXRD are between 14 and 31 nm. AC conductivity exhibited strong temperature (T) and frequency (f) dependence, reflecting mechanisms dominated by interfacial polarization and polaronic conduction. The dielectric constant demonstrated a Maxwell-Wagner type response, influenced by grain boundary polarization and localized charge carriers. Magnetic measurements revealed the coexistence of ferromagnetic (or ferrimagnetic) and antiferromagnetic (or paramagnetic) contributions, with an enhancement in ferromagnetic behaviour attributed to the non-compensated spins, finite size effects, and higher magnetic moments of dopant ions. The coercivity, magnetization, and remanent magnetization were found to increase with the rise in the concentration of Fe, Mn, Ni, and Cr doping ions.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Materials Research Bulletin
Materials Research Bulletin 工程技术-材料科学:综合
CiteScore
9.80
自引率
5.60%
发文量
372
审稿时长
42 days
期刊介绍: Materials Research Bulletin is an international journal reporting high-impact research on processing-structure-property relationships in functional materials and nanomaterials with interesting electronic, magnetic, optical, thermal, mechanical or catalytic properties. Papers purely on thermodynamics or theoretical calculations (e.g., density functional theory) do not fall within the scope of the journal unless they also demonstrate a clear link to physical properties. Topics covered include functional materials (e.g., dielectrics, pyroelectrics, piezoelectrics, ferroelectrics, relaxors, thermoelectrics, etc.); electrochemistry and solid-state ionics (e.g., photovoltaics, batteries, sensors, and fuel cells); nanomaterials, graphene, and nanocomposites; luminescence and photocatalysis; crystal-structure and defect-structure analysis; novel electronics; non-crystalline solids; flexible electronics; protein-material interactions; and polymeric ion-exchange membranes.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信