通过Nörlund和拉普拉斯变换的Apostol型多项式涉及矩函数和插值函数的公式

IF 1.2 3区 数学 Q1 MATHEMATICS
Elif Sükrüoglu, Yilmaz Simsek
{"title":"通过Nörlund和拉普拉斯变换的Apostol型多项式涉及矩函数和插值函数的公式","authors":"Elif Sükrüoglu,&nbsp;Yilmaz Simsek","doi":"10.1016/j.jmaa.2025.129504","DOIUrl":null,"url":null,"abstract":"<div><div>The goal of this paper is to define a new approach when constructing generating functions for the generalization and unification of the Apostol type Bernoulli polynomials. We apply the Nörlund sum, the Euler operator for derivative, ad the (inverse) Laplace transform to reach this aim. We also aim to prove a functional equation involving the Nörlund sum and the (inverse) Laplace transform. Moreover, by combining these operators with functional equations of the generating functions, we derive some new formulas for the Apostol type polynomials and <em>k</em>th moment of the geometric distribution. Finally, applying these operators, we not only find new the Riemann integral formulas, but also construct interpolation functions related to the Lerch zeta and the Hurwitz zeta functions for these polynomials.</div></div>","PeriodicalId":50147,"journal":{"name":"Journal of Mathematical Analysis and Applications","volume":"550 1","pages":"Article 129504"},"PeriodicalIF":1.2000,"publicationDate":"2025-03-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Formulas involving moment and interpolation functions for Apostol type polynomials via Nörlund sum and Laplace transform\",\"authors\":\"Elif Sükrüoglu,&nbsp;Yilmaz Simsek\",\"doi\":\"10.1016/j.jmaa.2025.129504\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The goal of this paper is to define a new approach when constructing generating functions for the generalization and unification of the Apostol type Bernoulli polynomials. We apply the Nörlund sum, the Euler operator for derivative, ad the (inverse) Laplace transform to reach this aim. We also aim to prove a functional equation involving the Nörlund sum and the (inverse) Laplace transform. Moreover, by combining these operators with functional equations of the generating functions, we derive some new formulas for the Apostol type polynomials and <em>k</em>th moment of the geometric distribution. Finally, applying these operators, we not only find new the Riemann integral formulas, but also construct interpolation functions related to the Lerch zeta and the Hurwitz zeta functions for these polynomials.</div></div>\",\"PeriodicalId\":50147,\"journal\":{\"name\":\"Journal of Mathematical Analysis and Applications\",\"volume\":\"550 1\",\"pages\":\"Article 129504\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2025-03-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Mathematical Analysis and Applications\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0022247X25002859\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Mathematical Analysis and Applications","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022247X25002859","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

本文的目的是为Apostol型伯努利多项式的泛化和统一定义一种新的构造生成函数的方法。我们应用Nörlund和,导数的欧拉算子,和(逆)拉普拉斯变换来达到这个目的。我们还旨在证明一个涉及Nörlund和(逆)拉普拉斯变换的泛函方程。此外,将这些算子与生成函数的泛函方程相结合,导出了Apostol型多项式和几何分布的第k阶矩的一些新公式。最后,利用这些算子,我们不仅找到了新的黎曼积分公式,而且构造了与这些多项式的Lerch zeta和Hurwitz zeta函数相关的插值函数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Formulas involving moment and interpolation functions for Apostol type polynomials via Nörlund sum and Laplace transform
The goal of this paper is to define a new approach when constructing generating functions for the generalization and unification of the Apostol type Bernoulli polynomials. We apply the Nörlund sum, the Euler operator for derivative, ad the (inverse) Laplace transform to reach this aim. We also aim to prove a functional equation involving the Nörlund sum and the (inverse) Laplace transform. Moreover, by combining these operators with functional equations of the generating functions, we derive some new formulas for the Apostol type polynomials and kth moment of the geometric distribution. Finally, applying these operators, we not only find new the Riemann integral formulas, but also construct interpolation functions related to the Lerch zeta and the Hurwitz zeta functions for these polynomials.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.50
自引率
7.70%
发文量
790
审稿时长
6 months
期刊介绍: The Journal of Mathematical Analysis and Applications presents papers that treat mathematical analysis and its numerous applications. The journal emphasizes articles devoted to the mathematical treatment of questions arising in physics, chemistry, biology, and engineering, particularly those that stress analytical aspects and novel problems and their solutions. Papers are sought which employ one or more of the following areas of classical analysis: • Analytic number theory • Functional analysis and operator theory • Real and harmonic analysis • Complex analysis • Numerical analysis • Applied mathematics • Partial differential equations • Dynamical systems • Control and Optimization • Probability • Mathematical biology • Combinatorics • Mathematical physics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信