使用人工智能深度学习技术从手部x射线图像生成准确的性别估计:有限骨骼区域的研究

IF 1.3 4区 医学 Q3 MEDICINE, LEGAL
Paniti Achararit, Haruethai Bongkaew, Thanapon Chobpenthai, Pawaree Nonthasaen
{"title":"使用人工智能深度学习技术从手部x射线图像生成准确的性别估计:有限骨骼区域的研究","authors":"Paniti Achararit,&nbsp;Haruethai Bongkaew,&nbsp;Thanapon Chobpenthai,&nbsp;Pawaree Nonthasaen","doi":"10.1016/j.legalmed.2025.102612","DOIUrl":null,"url":null,"abstract":"<div><div>Hand bone structure provides valuable features for sex estimation. This research introduces a novel approach using Artificial Intelligence (AI), specifically Convolutional Neural Networks (CNNs), to classify sex from hand X-ray images, focusing on the diagnostic potential of specific bone regions. We assess CNN performance on different hand skeleton areas, utilize Score-CAM to understand sex-discriminating features, and evaluate advanced CNN architectures. While the Xception model achieved the highest overall accuracy of 83.5% using complete hand X-rays, the InceptionResNetV2 model demonstrated remarkable efficiency by achieving 81.68% accuracy using only the proximal phalanx and metacarpal bones, maintaining a comparable AUC-ROC score of 0.92. Metacarpals of the first and second fingers were identified as key for differentiation. This approach demonstrates the power of AI in skeletal analysis and represents a significant step towards deployable AI tools for forensic and medical sex identification.</div></div>","PeriodicalId":49913,"journal":{"name":"Legal Medicine","volume":"74 ","pages":"Article 102612"},"PeriodicalIF":1.3000,"publicationDate":"2025-03-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Generating accurate sex estimation from hand X-ray images using AI deep-learning techniques: A study of limited bone regions\",\"authors\":\"Paniti Achararit,&nbsp;Haruethai Bongkaew,&nbsp;Thanapon Chobpenthai,&nbsp;Pawaree Nonthasaen\",\"doi\":\"10.1016/j.legalmed.2025.102612\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Hand bone structure provides valuable features for sex estimation. This research introduces a novel approach using Artificial Intelligence (AI), specifically Convolutional Neural Networks (CNNs), to classify sex from hand X-ray images, focusing on the diagnostic potential of specific bone regions. We assess CNN performance on different hand skeleton areas, utilize Score-CAM to understand sex-discriminating features, and evaluate advanced CNN architectures. While the Xception model achieved the highest overall accuracy of 83.5% using complete hand X-rays, the InceptionResNetV2 model demonstrated remarkable efficiency by achieving 81.68% accuracy using only the proximal phalanx and metacarpal bones, maintaining a comparable AUC-ROC score of 0.92. Metacarpals of the first and second fingers were identified as key for differentiation. This approach demonstrates the power of AI in skeletal analysis and represents a significant step towards deployable AI tools for forensic and medical sex identification.</div></div>\",\"PeriodicalId\":49913,\"journal\":{\"name\":\"Legal Medicine\",\"volume\":\"74 \",\"pages\":\"Article 102612\"},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2025-03-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Legal Medicine\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S134462232500046X\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MEDICINE, LEGAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Legal Medicine","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S134462232500046X","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MEDICINE, LEGAL","Score":null,"Total":0}
引用次数: 0

摘要

手骨结构为性别估计提供了有价值的特征。本研究引入了一种使用人工智能(AI),特别是卷积神经网络(cnn)的新方法,从手部x射线图像中对性别进行分类,重点关注特定骨骼区域的诊断潜力。我们评估了CNN在不同手骨架区域的性能,利用Score-CAM来理解性别区分特征,并评估了先进的CNN架构。虽然Xception模型在使用完整的手部x射线时达到了最高的83.5%的总体准确率,但InceptionResNetV2模型仅使用近端指骨和掌骨时达到了81.68%的准确率,保持了0.92的AUC-ROC评分,显示出了显著的效率。第一和第二指掌骨被认为是分化的关键。这种方法展示了人工智能在骨骼分析中的强大功能,并代表了在法医和医学性别鉴定中部署人工智能工具的重要一步。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Generating accurate sex estimation from hand X-ray images using AI deep-learning techniques: A study of limited bone regions
Hand bone structure provides valuable features for sex estimation. This research introduces a novel approach using Artificial Intelligence (AI), specifically Convolutional Neural Networks (CNNs), to classify sex from hand X-ray images, focusing on the diagnostic potential of specific bone regions. We assess CNN performance on different hand skeleton areas, utilize Score-CAM to understand sex-discriminating features, and evaluate advanced CNN architectures. While the Xception model achieved the highest overall accuracy of 83.5% using complete hand X-rays, the InceptionResNetV2 model demonstrated remarkable efficiency by achieving 81.68% accuracy using only the proximal phalanx and metacarpal bones, maintaining a comparable AUC-ROC score of 0.92. Metacarpals of the first and second fingers were identified as key for differentiation. This approach demonstrates the power of AI in skeletal analysis and represents a significant step towards deployable AI tools for forensic and medical sex identification.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Legal Medicine
Legal Medicine Nursing-Issues, Ethics and Legal Aspects
CiteScore
2.80
自引率
6.70%
发文量
119
审稿时长
7.9 weeks
期刊介绍: Legal Medicine provides an international forum for the publication of original articles, reviews and correspondence on subjects that cover practical and theoretical areas of interest relating to the wide range of legal medicine. Subjects covered include forensic pathology, toxicology, odontology, anthropology, criminalistics, immunochemistry, hemogenetics and forensic aspects of biological science with emphasis on DNA analysis and molecular biology. Submissions dealing with medicolegal problems such as malpractice, insurance, child abuse or ethics in medical practice are also acceptable.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信