原子碳和氧在面心立方和体心立方铁多层膜上不同的扩散和复合动力学

IF 16 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Xiao Han, Pengju Ren, Daniel García Rodríguez, He Wang*, Xin Yu, Xiong Zhou, Jian Xu, Xiao-Dong Wen, Yong Yang*, Yong-Wang Li, J. W. Hans Niemantsverdriet, C. J. Weststrate* and Richard Gubo*, 
{"title":"原子碳和氧在面心立方和体心立方铁多层膜上不同的扩散和复合动力学","authors":"Xiao Han,&nbsp;Pengju Ren,&nbsp;Daniel García Rodríguez,&nbsp;He Wang*,&nbsp;Xin Yu,&nbsp;Xiong Zhou,&nbsp;Jian Xu,&nbsp;Xiao-Dong Wen,&nbsp;Yong Yang*,&nbsp;Yong-Wang Li,&nbsp;J. W. Hans Niemantsverdriet,&nbsp;C. J. Weststrate* and Richard Gubo*,&nbsp;","doi":"10.1021/acsnano.4c1802510.1021/acsnano.4c18025","DOIUrl":null,"url":null,"abstract":"<p >This study investigates the distinctly different dynamics of atomic carbon and oxygen diffusion, both on the surface and into the bulk of iron multilayer films with face-centered cubic (FCC) (100) and body-centered cubic (BCC) (110) structures, and how these processes impact the recombination behavior of carbon and oxygen, particularly at elevated temperatures. On FCC-iron (γ-iron), CO dissociation occurs around 300 K, leading to the formation of segregated carbide and oxide islands on the surface upon annealing. Above the onset temperature of 600 K, mobile oxygen atoms diffuse to the edge of the carbide islands, where they combine with carbon to form CO. In contrast, on BCC (α-iron) surfaces, a disordered, atomically mixed carbide-oxide phase forms upon CO dissociation. Carbon does not remain on the surface but migrates to the subsurface during heating, leaving oxygen on the surface. Carbon remains predominantly subsurface following CO dissociation, enabling a direct recombination pathway between subsurface carbon and surface oxygen. This subsurface activity requires lower activation, resulting in CO recombination and then desorption at lower temperatures compared to the FCC system. These distinct pathways observed on γ-FCC and α-BCC iron surfaces have significant implications for materials science, metallurgy, and catalysis, highlighting the critical role of thermodynamic and kinetic factors in governing atomic diffusion and recombination processes.</p>","PeriodicalId":21,"journal":{"name":"ACS Nano","volume":"19 11","pages":"11120–11132 11120–11132"},"PeriodicalIF":16.0000,"publicationDate":"2025-03-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Distinct Diffusion and Recombination Dynamics of Atomic Carbon and Oxygen on Face-Centered Cubic and Body-Centered Cubic Iron Multilayers\",\"authors\":\"Xiao Han,&nbsp;Pengju Ren,&nbsp;Daniel García Rodríguez,&nbsp;He Wang*,&nbsp;Xin Yu,&nbsp;Xiong Zhou,&nbsp;Jian Xu,&nbsp;Xiao-Dong Wen,&nbsp;Yong Yang*,&nbsp;Yong-Wang Li,&nbsp;J. W. Hans Niemantsverdriet,&nbsp;C. J. Weststrate* and Richard Gubo*,&nbsp;\",\"doi\":\"10.1021/acsnano.4c1802510.1021/acsnano.4c18025\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >This study investigates the distinctly different dynamics of atomic carbon and oxygen diffusion, both on the surface and into the bulk of iron multilayer films with face-centered cubic (FCC) (100) and body-centered cubic (BCC) (110) structures, and how these processes impact the recombination behavior of carbon and oxygen, particularly at elevated temperatures. On FCC-iron (γ-iron), CO dissociation occurs around 300 K, leading to the formation of segregated carbide and oxide islands on the surface upon annealing. Above the onset temperature of 600 K, mobile oxygen atoms diffuse to the edge of the carbide islands, where they combine with carbon to form CO. In contrast, on BCC (α-iron) surfaces, a disordered, atomically mixed carbide-oxide phase forms upon CO dissociation. Carbon does not remain on the surface but migrates to the subsurface during heating, leaving oxygen on the surface. Carbon remains predominantly subsurface following CO dissociation, enabling a direct recombination pathway between subsurface carbon and surface oxygen. This subsurface activity requires lower activation, resulting in CO recombination and then desorption at lower temperatures compared to the FCC system. These distinct pathways observed on γ-FCC and α-BCC iron surfaces have significant implications for materials science, metallurgy, and catalysis, highlighting the critical role of thermodynamic and kinetic factors in governing atomic diffusion and recombination processes.</p>\",\"PeriodicalId\":21,\"journal\":{\"name\":\"ACS Nano\",\"volume\":\"19 11\",\"pages\":\"11120–11132 11120–11132\"},\"PeriodicalIF\":16.0000,\"publicationDate\":\"2025-03-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Nano\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://pubs.acs.org/doi/10.1021/acsnano.4c18025\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Nano","FirstCategoryId":"88","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acsnano.4c18025","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

本研究探讨了面心立方(FCC)(100)和体心立方(BCC)(110)结构的铁多层膜表面和内部原子碳和氧的明显不同的扩散动力学,以及这些过程如何影响碳和氧的重组行为,特别是在高温下。在fcc -铁(γ-铁)上,CO在300 K左右发生解离,导致表面形成偏析的碳化物和氧化物岛。在600 K以上的起始温度,流动的氧原子扩散到碳化物岛的边缘,在那里它们与碳结合形成CO。相反,在BCC (α-铁)表面,CO解离形成无序的、原子混合的碳化物-氧化物相。碳不会停留在地表,而是在加热过程中迁移到地下,将氧气留在地表。CO解离后,碳主要留在地下,使地下碳和表面氧之间的直接重组途径成为可能。与FCC系统相比,这种地下活性需要较低的活化,从而导致CO重组,然后在较低的温度下解吸。在γ-FCC和α-BCC铁表面观察到的这些不同的途径对材料科学、冶金和催化具有重要意义,突出了热力学和动力学因素在控制原子扩散和重组过程中的关键作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Distinct Diffusion and Recombination Dynamics of Atomic Carbon and Oxygen on Face-Centered Cubic and Body-Centered Cubic Iron Multilayers

Distinct Diffusion and Recombination Dynamics of Atomic Carbon and Oxygen on Face-Centered Cubic and Body-Centered Cubic Iron Multilayers

This study investigates the distinctly different dynamics of atomic carbon and oxygen diffusion, both on the surface and into the bulk of iron multilayer films with face-centered cubic (FCC) (100) and body-centered cubic (BCC) (110) structures, and how these processes impact the recombination behavior of carbon and oxygen, particularly at elevated temperatures. On FCC-iron (γ-iron), CO dissociation occurs around 300 K, leading to the formation of segregated carbide and oxide islands on the surface upon annealing. Above the onset temperature of 600 K, mobile oxygen atoms diffuse to the edge of the carbide islands, where they combine with carbon to form CO. In contrast, on BCC (α-iron) surfaces, a disordered, atomically mixed carbide-oxide phase forms upon CO dissociation. Carbon does not remain on the surface but migrates to the subsurface during heating, leaving oxygen on the surface. Carbon remains predominantly subsurface following CO dissociation, enabling a direct recombination pathway between subsurface carbon and surface oxygen. This subsurface activity requires lower activation, resulting in CO recombination and then desorption at lower temperatures compared to the FCC system. These distinct pathways observed on γ-FCC and α-BCC iron surfaces have significant implications for materials science, metallurgy, and catalysis, highlighting the critical role of thermodynamic and kinetic factors in governing atomic diffusion and recombination processes.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACS Nano
ACS Nano 工程技术-材料科学:综合
CiteScore
26.00
自引率
4.10%
发文量
1627
审稿时长
1.7 months
期刊介绍: ACS Nano, published monthly, serves as an international forum for comprehensive articles on nanoscience and nanotechnology research at the intersections of chemistry, biology, materials science, physics, and engineering. The journal fosters communication among scientists in these communities, facilitating collaboration, new research opportunities, and advancements through discoveries. ACS Nano covers synthesis, assembly, characterization, theory, and simulation of nanostructures, nanobiotechnology, nanofabrication, methods and tools for nanoscience and nanotechnology, and self- and directed-assembly. Alongside original research articles, it offers thorough reviews, perspectives on cutting-edge research, and discussions envisioning the future of nanoscience and nanotechnology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信