湿度破坏了手性二维钙钛矿的结构和热学性质

IF 16 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Raushan N. Nurdillayeva, Raphael F. Moral, Mike Pols, Do-Kyoung Lee, Virginia Altoe, Craig P. Schwartz, Shuxia Tao and Carolin M. Sutter-Fella*, 
{"title":"湿度破坏了手性二维钙钛矿的结构和热学性质","authors":"Raushan N. Nurdillayeva,&nbsp;Raphael F. Moral,&nbsp;Mike Pols,&nbsp;Do-Kyoung Lee,&nbsp;Virginia Altoe,&nbsp;Craig P. Schwartz,&nbsp;Shuxia Tao and Carolin M. Sutter-Fella*,&nbsp;","doi":"10.1021/acsnano.5c0048010.1021/acsnano.5c00480","DOIUrl":null,"url":null,"abstract":"<p >Chiral two-dimensional (2D) hybrid organic–inorganic metal halide perovskite semiconductors have emerged as an exceptional material platform with many design opportunities for spintronic applications. However, a comprehensive understanding of changes to the crystal structure and chiroptical properties upon exposure to atmospheric humidity has not been established. We demonstrate phase degradation to the 1D (MBA)PbI<sub>3</sub> (MBA = methylbenzylammonium) and the hypothetical (MBA)<sub>3</sub>PbI<sub>5</sub>·H<sub>2</sub>O hydrate phases, accompanied by a reduction and disappearance of the chiroptical response. First-principle simulations show that water molecules preferentially locate at the interface between the organic cations and the inorganic framework, thereby disrupting the hydrogen bonding, impacting both the structural chirality and stability of the material. These findings provide critical insights into phase degradation mechanisms and their impact on chiroptical activity in chiral 2D perovskites.</p>","PeriodicalId":21,"journal":{"name":"ACS Nano","volume":"19 11","pages":"11348–11357 11348–11357"},"PeriodicalIF":16.0000,"publicationDate":"2025-03-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.acs.org/doi/epdf/10.1021/acsnano.5c00480","citationCount":"0","resultStr":"{\"title\":\"Humidity Disrupts Structural and Chiroptical Properties of Chiral 2D Perovskites\",\"authors\":\"Raushan N. Nurdillayeva,&nbsp;Raphael F. Moral,&nbsp;Mike Pols,&nbsp;Do-Kyoung Lee,&nbsp;Virginia Altoe,&nbsp;Craig P. Schwartz,&nbsp;Shuxia Tao and Carolin M. Sutter-Fella*,&nbsp;\",\"doi\":\"10.1021/acsnano.5c0048010.1021/acsnano.5c00480\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >Chiral two-dimensional (2D) hybrid organic–inorganic metal halide perovskite semiconductors have emerged as an exceptional material platform with many design opportunities for spintronic applications. However, a comprehensive understanding of changes to the crystal structure and chiroptical properties upon exposure to atmospheric humidity has not been established. We demonstrate phase degradation to the 1D (MBA)PbI<sub>3</sub> (MBA = methylbenzylammonium) and the hypothetical (MBA)<sub>3</sub>PbI<sub>5</sub>·H<sub>2</sub>O hydrate phases, accompanied by a reduction and disappearance of the chiroptical response. First-principle simulations show that water molecules preferentially locate at the interface between the organic cations and the inorganic framework, thereby disrupting the hydrogen bonding, impacting both the structural chirality and stability of the material. These findings provide critical insights into phase degradation mechanisms and their impact on chiroptical activity in chiral 2D perovskites.</p>\",\"PeriodicalId\":21,\"journal\":{\"name\":\"ACS Nano\",\"volume\":\"19 11\",\"pages\":\"11348–11357 11348–11357\"},\"PeriodicalIF\":16.0000,\"publicationDate\":\"2025-03-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://pubs.acs.org/doi/epdf/10.1021/acsnano.5c00480\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Nano\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://pubs.acs.org/doi/10.1021/acsnano.5c00480\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Nano","FirstCategoryId":"88","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acsnano.5c00480","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

手性二维(2D)混合有机-无机金属卤化物钙钛矿半导体已经成为一种特殊的材料平台,具有许多自旋电子应用的设计机会。然而,对暴露于大气湿度时晶体结构和热学性质的变化的全面理解尚未建立。我们证明了1D (MBA)PbI3 (MBA =甲基苄铵)和假设的(MBA)3PbI5·H2O水合物相的相降解,伴随着热响应的减少和消失。第一性原理模拟表明,水分子优先位于有机阳离子和无机骨架之间的界面,从而破坏了氢键,影响了材料的结构手性和稳定性。这些发现为相降解机制及其对手性二维钙钛矿的热活性的影响提供了重要的见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Humidity Disrupts Structural and Chiroptical Properties of Chiral 2D Perovskites

Chiral two-dimensional (2D) hybrid organic–inorganic metal halide perovskite semiconductors have emerged as an exceptional material platform with many design opportunities for spintronic applications. However, a comprehensive understanding of changes to the crystal structure and chiroptical properties upon exposure to atmospheric humidity has not been established. We demonstrate phase degradation to the 1D (MBA)PbI3 (MBA = methylbenzylammonium) and the hypothetical (MBA)3PbI5·H2O hydrate phases, accompanied by a reduction and disappearance of the chiroptical response. First-principle simulations show that water molecules preferentially locate at the interface between the organic cations and the inorganic framework, thereby disrupting the hydrogen bonding, impacting both the structural chirality and stability of the material. These findings provide critical insights into phase degradation mechanisms and their impact on chiroptical activity in chiral 2D perovskites.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACS Nano
ACS Nano 工程技术-材料科学:综合
CiteScore
26.00
自引率
4.10%
发文量
1627
审稿时长
1.7 months
期刊介绍: ACS Nano, published monthly, serves as an international forum for comprehensive articles on nanoscience and nanotechnology research at the intersections of chemistry, biology, materials science, physics, and engineering. The journal fosters communication among scientists in these communities, facilitating collaboration, new research opportunities, and advancements through discoveries. ACS Nano covers synthesis, assembly, characterization, theory, and simulation of nanostructures, nanobiotechnology, nanofabrication, methods and tools for nanoscience and nanotechnology, and self- and directed-assembly. Alongside original research articles, it offers thorough reviews, perspectives on cutting-edge research, and discussions envisioning the future of nanoscience and nanotechnology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信