高稳定锂氧电池用硝酸锂介导的低挥发性深共晶电解质

IF 16 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Jiaxian Wang, Tiansheng Bai, Yihong Liang, Lin Xie, Hongqiang Zhang, Zhen Zeng, Siyu Fang, Dandan Gao, Wanbao Wu, Zhenglin Hu, Jingyu Lu*, Jiaheng Zhang, Lijie Ci* and Deping Li*, 
{"title":"高稳定锂氧电池用硝酸锂介导的低挥发性深共晶电解质","authors":"Jiaxian Wang,&nbsp;Tiansheng Bai,&nbsp;Yihong Liang,&nbsp;Lin Xie,&nbsp;Hongqiang Zhang,&nbsp;Zhen Zeng,&nbsp;Siyu Fang,&nbsp;Dandan Gao,&nbsp;Wanbao Wu,&nbsp;Zhenglin Hu,&nbsp;Jingyu Lu*,&nbsp;Jiaheng Zhang,&nbsp;Lijie Ci* and Deping Li*,&nbsp;","doi":"10.1021/acsnano.4c1852310.1021/acsnano.4c18523","DOIUrl":null,"url":null,"abstract":"<p >Lithium–oxygen batteries (LOBs), with an extremely high theoretical energy density (3500 Wh kg<sup>–1</sup>), have been regarded as potential candidates for future large-scale energy storage facilities. However, the unique semiopen system puts a hurdle on the long-lasting operation of LOBs with critical issues like the severe volatilization of the aprotic electrolyte, surface passivation or dendrite growth of the lithium metal anode, and the sluggish oxygen redox reactions. Herein, we propose a strategy to tackle the above issues with a solvation structure regulated deep eutectic electrolyte (DEE) for LOBs. With modulated content of LiNO<sub>3</sub> as the interface stabilizer, the Li/NMA-2.0/Li symmetric cell achieves a prolonged cycling stability of over 700 h under a semiopen O<sub>2</sub> atmosphere. It can also operate in real air, while the good high temperature conductivity of the electrolyte enables the battery to cycle for more than 100 times at 60 °C. Besides, the solvation structure of the DEE electrolyte alters the discharge/charge reaction kinetics via lowering the nucleation energy of Li<sub>2</sub>O<sub>2</sub>, achieving the formation of nanoscale discharge products and realizing a superlong cyclability of 779 cycles at a high current density of 500 mA g<sup>–1</sup>. Moreover, the underlying mechanisms are well revealed through systematically designed experiments and theoretical simulations. This work will provide guidance in designing electrolytes for alkali-metal batteries and semiopen electrochemical systems.</p>","PeriodicalId":21,"journal":{"name":"ACS Nano","volume":"19 11","pages":"11284–11294 11284–11294"},"PeriodicalIF":16.0000,"publicationDate":"2025-03-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Lithium Nitrate-Mediated Low-Volatile Deep Eutectic Electrolyte for Highly Stable Lithium–Oxygen Batteries\",\"authors\":\"Jiaxian Wang,&nbsp;Tiansheng Bai,&nbsp;Yihong Liang,&nbsp;Lin Xie,&nbsp;Hongqiang Zhang,&nbsp;Zhen Zeng,&nbsp;Siyu Fang,&nbsp;Dandan Gao,&nbsp;Wanbao Wu,&nbsp;Zhenglin Hu,&nbsp;Jingyu Lu*,&nbsp;Jiaheng Zhang,&nbsp;Lijie Ci* and Deping Li*,&nbsp;\",\"doi\":\"10.1021/acsnano.4c1852310.1021/acsnano.4c18523\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >Lithium–oxygen batteries (LOBs), with an extremely high theoretical energy density (3500 Wh kg<sup>–1</sup>), have been regarded as potential candidates for future large-scale energy storage facilities. However, the unique semiopen system puts a hurdle on the long-lasting operation of LOBs with critical issues like the severe volatilization of the aprotic electrolyte, surface passivation or dendrite growth of the lithium metal anode, and the sluggish oxygen redox reactions. Herein, we propose a strategy to tackle the above issues with a solvation structure regulated deep eutectic electrolyte (DEE) for LOBs. With modulated content of LiNO<sub>3</sub> as the interface stabilizer, the Li/NMA-2.0/Li symmetric cell achieves a prolonged cycling stability of over 700 h under a semiopen O<sub>2</sub> atmosphere. It can also operate in real air, while the good high temperature conductivity of the electrolyte enables the battery to cycle for more than 100 times at 60 °C. Besides, the solvation structure of the DEE electrolyte alters the discharge/charge reaction kinetics via lowering the nucleation energy of Li<sub>2</sub>O<sub>2</sub>, achieving the formation of nanoscale discharge products and realizing a superlong cyclability of 779 cycles at a high current density of 500 mA g<sup>–1</sup>. Moreover, the underlying mechanisms are well revealed through systematically designed experiments and theoretical simulations. This work will provide guidance in designing electrolytes for alkali-metal batteries and semiopen electrochemical systems.</p>\",\"PeriodicalId\":21,\"journal\":{\"name\":\"ACS Nano\",\"volume\":\"19 11\",\"pages\":\"11284–11294 11284–11294\"},\"PeriodicalIF\":16.0000,\"publicationDate\":\"2025-03-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Nano\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://pubs.acs.org/doi/10.1021/acsnano.4c18523\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Nano","FirstCategoryId":"88","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acsnano.4c18523","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

锂氧电池(lob)具有极高的理论能量密度(3500 Wh kg-1),被认为是未来大规模储能设施的潜在候选者。然而,独特的半开放式系统给lob的长期运行带来了障碍,如非质子电解质的严重挥发,锂金属阳极的表面钝化或枝晶生长,以及缓慢的氧氧化还原反应。在此,我们提出了一种解决上述问题的策略,即溶剂化结构调节的深共晶电解质(DEE)用于lob。在半开放的O2环境下,Li/NMA-2.0/Li对称电池的循环稳定性可达700 h以上。它还可以在真实空气中工作,而电解质良好的高温导电性使电池在60℃下循环100次以上。此外,DEE电解质的溶剂化结构通过降低Li2O2的成核能改变了放电/充电反应动力学,实现了纳米级放电产物的形成,并在500 mA g-1的高电流密度下实现了779次循环的超长可循环性。此外,通过系统设计的实验和理论模拟,很好地揭示了潜在的机制。这项工作将为碱金属电池和半开放式电化学系统的电解质设计提供指导。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Lithium Nitrate-Mediated Low-Volatile Deep Eutectic Electrolyte for Highly Stable Lithium–Oxygen Batteries

Lithium Nitrate-Mediated Low-Volatile Deep Eutectic Electrolyte for Highly Stable Lithium–Oxygen Batteries

Lithium–oxygen batteries (LOBs), with an extremely high theoretical energy density (3500 Wh kg–1), have been regarded as potential candidates for future large-scale energy storage facilities. However, the unique semiopen system puts a hurdle on the long-lasting operation of LOBs with critical issues like the severe volatilization of the aprotic electrolyte, surface passivation or dendrite growth of the lithium metal anode, and the sluggish oxygen redox reactions. Herein, we propose a strategy to tackle the above issues with a solvation structure regulated deep eutectic electrolyte (DEE) for LOBs. With modulated content of LiNO3 as the interface stabilizer, the Li/NMA-2.0/Li symmetric cell achieves a prolonged cycling stability of over 700 h under a semiopen O2 atmosphere. It can also operate in real air, while the good high temperature conductivity of the electrolyte enables the battery to cycle for more than 100 times at 60 °C. Besides, the solvation structure of the DEE electrolyte alters the discharge/charge reaction kinetics via lowering the nucleation energy of Li2O2, achieving the formation of nanoscale discharge products and realizing a superlong cyclability of 779 cycles at a high current density of 500 mA g–1. Moreover, the underlying mechanisms are well revealed through systematically designed experiments and theoretical simulations. This work will provide guidance in designing electrolytes for alkali-metal batteries and semiopen electrochemical systems.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACS Nano
ACS Nano 工程技术-材料科学:综合
CiteScore
26.00
自引率
4.10%
发文量
1627
审稿时长
1.7 months
期刊介绍: ACS Nano, published monthly, serves as an international forum for comprehensive articles on nanoscience and nanotechnology research at the intersections of chemistry, biology, materials science, physics, and engineering. The journal fosters communication among scientists in these communities, facilitating collaboration, new research opportunities, and advancements through discoveries. ACS Nano covers synthesis, assembly, characterization, theory, and simulation of nanostructures, nanobiotechnology, nanofabrication, methods and tools for nanoscience and nanotechnology, and self- and directed-assembly. Alongside original research articles, it offers thorough reviews, perspectives on cutting-edge research, and discussions envisioning the future of nanoscience and nanotechnology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信