Ahmed Ismail , Muhammad Zahid , Bilal Ahmad , Fazal Raziq , Syed ul Hasnain Bakhtiar , Sher Ali , Adnan Khan , Nauman Ali , Xiaoqiang Wu , Sharafat Ali , Weidong He , Jiabao Yi , Liang Qiao
{"title":"挥发性有机化合物的催化氧化:负载型和非负载型催化剂的最新进展综述","authors":"Ahmed Ismail , Muhammad Zahid , Bilal Ahmad , Fazal Raziq , Syed ul Hasnain Bakhtiar , Sher Ali , Adnan Khan , Nauman Ali , Xiaoqiang Wu , Sharafat Ali , Weidong He , Jiabao Yi , Liang Qiao","doi":"10.1016/j.ccr.2025.216617","DOIUrl":null,"url":null,"abstract":"<div><div>Volatile organic compounds (VOCs) are air pollutants that have garnered considerable consideration because of their detrimental effects on both public health and the environment. Catalytic oxidation is extensively recognized as an emerging technology for VOC elimination, as it produces no secondary pollutants and requires low energy input. This review systematically examines recent advancements in supported noble metal catalysts (SNM), supported transition metal catalysts (STM) and non-supported transition metal oxides (NSTM) for VOC oxidation. First, various types of VOCs and their emission sources are discussed. Next, recent progress in the catalytic oxidation of different VOCs using SNM, STM and NSTM is reviewed. The oxidation mechanisms of VOCs are then comprehensively summarized. Additionally, the effects of reaction conditions, including the presence of H<sub>2</sub>O, CO<sub>2</sub>, SO<sub>2</sub>, Cl species as well as reactant composition, concentration, and space velocity, on catalyst performance, deactivation, and regeneration approaches are explored. Finally, the key scientific obstacles and future perspectives in this field are addressed. This review provides as a solid experimental and theoretical basis for the development and design of stable SNM, STM and NSTM catalysts for VOC oxidation in the years to come.</div></div>","PeriodicalId":289,"journal":{"name":"Coordination Chemistry Reviews","volume":"535 ","pages":"Article 216617"},"PeriodicalIF":20.3000,"publicationDate":"2025-03-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Catalytic oxidation of volatile organic compounds: A review of recent advances in supported and non-supported catalysts\",\"authors\":\"Ahmed Ismail , Muhammad Zahid , Bilal Ahmad , Fazal Raziq , Syed ul Hasnain Bakhtiar , Sher Ali , Adnan Khan , Nauman Ali , Xiaoqiang Wu , Sharafat Ali , Weidong He , Jiabao Yi , Liang Qiao\",\"doi\":\"10.1016/j.ccr.2025.216617\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Volatile organic compounds (VOCs) are air pollutants that have garnered considerable consideration because of their detrimental effects on both public health and the environment. Catalytic oxidation is extensively recognized as an emerging technology for VOC elimination, as it produces no secondary pollutants and requires low energy input. This review systematically examines recent advancements in supported noble metal catalysts (SNM), supported transition metal catalysts (STM) and non-supported transition metal oxides (NSTM) for VOC oxidation. First, various types of VOCs and their emission sources are discussed. Next, recent progress in the catalytic oxidation of different VOCs using SNM, STM and NSTM is reviewed. The oxidation mechanisms of VOCs are then comprehensively summarized. Additionally, the effects of reaction conditions, including the presence of H<sub>2</sub>O, CO<sub>2</sub>, SO<sub>2</sub>, Cl species as well as reactant composition, concentration, and space velocity, on catalyst performance, deactivation, and regeneration approaches are explored. Finally, the key scientific obstacles and future perspectives in this field are addressed. This review provides as a solid experimental and theoretical basis for the development and design of stable SNM, STM and NSTM catalysts for VOC oxidation in the years to come.</div></div>\",\"PeriodicalId\":289,\"journal\":{\"name\":\"Coordination Chemistry Reviews\",\"volume\":\"535 \",\"pages\":\"Article 216617\"},\"PeriodicalIF\":20.3000,\"publicationDate\":\"2025-03-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Coordination Chemistry Reviews\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0010854525001870\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, INORGANIC & NUCLEAR\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Coordination Chemistry Reviews","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0010854525001870","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, INORGANIC & NUCLEAR","Score":null,"Total":0}
Catalytic oxidation of volatile organic compounds: A review of recent advances in supported and non-supported catalysts
Volatile organic compounds (VOCs) are air pollutants that have garnered considerable consideration because of their detrimental effects on both public health and the environment. Catalytic oxidation is extensively recognized as an emerging technology for VOC elimination, as it produces no secondary pollutants and requires low energy input. This review systematically examines recent advancements in supported noble metal catalysts (SNM), supported transition metal catalysts (STM) and non-supported transition metal oxides (NSTM) for VOC oxidation. First, various types of VOCs and their emission sources are discussed. Next, recent progress in the catalytic oxidation of different VOCs using SNM, STM and NSTM is reviewed. The oxidation mechanisms of VOCs are then comprehensively summarized. Additionally, the effects of reaction conditions, including the presence of H2O, CO2, SO2, Cl species as well as reactant composition, concentration, and space velocity, on catalyst performance, deactivation, and regeneration approaches are explored. Finally, the key scientific obstacles and future perspectives in this field are addressed. This review provides as a solid experimental and theoretical basis for the development and design of stable SNM, STM and NSTM catalysts for VOC oxidation in the years to come.
期刊介绍:
Coordination Chemistry Reviews offers rapid publication of review articles on current and significant topics in coordination chemistry, encompassing organometallic, supramolecular, theoretical, and bioinorganic chemistry. It also covers catalysis, materials chemistry, and metal-organic frameworks from a coordination chemistry perspective. Reviews summarize recent developments or discuss specific techniques, welcoming contributions from both established and emerging researchers.
The journal releases special issues on timely subjects, including those featuring contributions from specific regions or conferences. Occasional full-length book articles are also featured. Additionally, special volumes cover annual reviews of main group chemistry, transition metal group chemistry, and organometallic chemistry. These comprehensive reviews are vital resources for those engaged in coordination chemistry, further establishing Coordination Chemistry Reviews as a hub for insightful surveys in inorganic and physical inorganic chemistry.