Han Chen, Yinfeng Long, Shiyu Zhang, Kai Liu, Mingfeng Chen, Jinxiu Zhao, Mengwei Si, Lin Wang
{"title":"范德华铁电cucrp2s6使能无迟滞负电容场效应晶体管","authors":"Han Chen, Yinfeng Long, Shiyu Zhang, Kai Liu, Mingfeng Chen, Jinxiu Zhao, Mengwei Si, Lin Wang","doi":"10.1002/adma.202419125","DOIUrl":null,"url":null,"abstract":"The relentless pursuit of miniaturization and reduced power consumption in information technology demands innovative device architectures. Negative capacitance field-effect transistors (NC-FETs) offer a promising solution by harnessing the negative capacitance effect of ferroelectric materials to amplify gate voltage and achieve steep subthreshold swings (SS). In this work, 2D van der Waals (vdW) ferroelectric CuCrP<sub>2</sub>S<sub>6</sub> (CCPS) is employed as the gate dielectric to realize hysteresis-free NC-FETs technology. Scanning microwave impedance microscopy (sMIM) is employed to investigate the dielectric property of CCPS, revealing a thickness-independent dielectric constant of ≈35. Subsequently, NC-FETs are fabricated with MoS<sub>2</sub> channel, and the capacitance matching conditions are meticulously investigated. The optimized devices exhibit simultaneously ultra-steep SS (≈12 mV dec<sup>−1</sup>) and negligible hysteresis, with immunity to both voltage scan range and scan rate. Finally, a resistor-loaded inverter is demonstrated manifesting a low operation voltage down to 0.2 V and hysteresis-free transfer characteristics. This work paves the way for the development of high-performance, low-power electronics by exploiting 2D vdW ferroelectric materials.","PeriodicalId":114,"journal":{"name":"Advanced Materials","volume":"12 1","pages":""},"PeriodicalIF":27.4000,"publicationDate":"2025-03-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Van der Waals Ferroelectric CuCrP2S6-Enabled Hysteresis-Free Negative Capacitance Field-Effect Transistors\",\"authors\":\"Han Chen, Yinfeng Long, Shiyu Zhang, Kai Liu, Mingfeng Chen, Jinxiu Zhao, Mengwei Si, Lin Wang\",\"doi\":\"10.1002/adma.202419125\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The relentless pursuit of miniaturization and reduced power consumption in information technology demands innovative device architectures. Negative capacitance field-effect transistors (NC-FETs) offer a promising solution by harnessing the negative capacitance effect of ferroelectric materials to amplify gate voltage and achieve steep subthreshold swings (SS). In this work, 2D van der Waals (vdW) ferroelectric CuCrP<sub>2</sub>S<sub>6</sub> (CCPS) is employed as the gate dielectric to realize hysteresis-free NC-FETs technology. Scanning microwave impedance microscopy (sMIM) is employed to investigate the dielectric property of CCPS, revealing a thickness-independent dielectric constant of ≈35. Subsequently, NC-FETs are fabricated with MoS<sub>2</sub> channel, and the capacitance matching conditions are meticulously investigated. The optimized devices exhibit simultaneously ultra-steep SS (≈12 mV dec<sup>−1</sup>) and negligible hysteresis, with immunity to both voltage scan range and scan rate. Finally, a resistor-loaded inverter is demonstrated manifesting a low operation voltage down to 0.2 V and hysteresis-free transfer characteristics. This work paves the way for the development of high-performance, low-power electronics by exploiting 2D vdW ferroelectric materials.\",\"PeriodicalId\":114,\"journal\":{\"name\":\"Advanced Materials\",\"volume\":\"12 1\",\"pages\":\"\"},\"PeriodicalIF\":27.4000,\"publicationDate\":\"2025-03-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advanced Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1002/adma.202419125\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/adma.202419125","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Van der Waals Ferroelectric CuCrP2S6-Enabled Hysteresis-Free Negative Capacitance Field-Effect Transistors
The relentless pursuit of miniaturization and reduced power consumption in information technology demands innovative device architectures. Negative capacitance field-effect transistors (NC-FETs) offer a promising solution by harnessing the negative capacitance effect of ferroelectric materials to amplify gate voltage and achieve steep subthreshold swings (SS). In this work, 2D van der Waals (vdW) ferroelectric CuCrP2S6 (CCPS) is employed as the gate dielectric to realize hysteresis-free NC-FETs technology. Scanning microwave impedance microscopy (sMIM) is employed to investigate the dielectric property of CCPS, revealing a thickness-independent dielectric constant of ≈35. Subsequently, NC-FETs are fabricated with MoS2 channel, and the capacitance matching conditions are meticulously investigated. The optimized devices exhibit simultaneously ultra-steep SS (≈12 mV dec−1) and negligible hysteresis, with immunity to both voltage scan range and scan rate. Finally, a resistor-loaded inverter is demonstrated manifesting a low operation voltage down to 0.2 V and hysteresis-free transfer characteristics. This work paves the way for the development of high-performance, low-power electronics by exploiting 2D vdW ferroelectric materials.
期刊介绍:
Advanced Materials, one of the world's most prestigious journals and the foundation of the Advanced portfolio, is the home of choice for best-in-class materials science for more than 30 years. Following this fast-growing and interdisciplinary field, we are considering and publishing the most important discoveries on any and all materials from materials scientists, chemists, physicists, engineers as well as health and life scientists and bringing you the latest results and trends in modern materials-related research every week.