应变弛豫增强了Cu/CuAu核/壳纳米晶体上有序金属间层的氨电合成

IF 11.5 Q1 CHEMISTRY, PHYSICAL
Qiang Gao, Bingqing Yao, Yuanqi Liu, Lei Shi, Zihao Yan, Libang Xu, Qian He, Huiyuan Zhu
{"title":"应变弛豫增强了Cu/CuAu核/壳纳米晶体上有序金属间层的氨电合成","authors":"Qiang Gao, Bingqing Yao, Yuanqi Liu, Lei Shi, Zihao Yan, Libang Xu, Qian He, Huiyuan Zhu","doi":"10.1016/j.checat.2025.101328","DOIUrl":null,"url":null,"abstract":"Recycling ammonia (NH<sub>3</sub>) via the electrocatalytic nitrate reduction reaction (NO<sub>3</sub>RR) offers a sustainable, energy-efficient solution for closing the nitrogen cycle while simultaneously treating nitrate-rich wastewater. In this work, we synthesized core/shell Cu/CuAu nanocubes with precisely controlled ordered intermetallic layers using a facile seed-mediated method. The compressive surface strain of the nanocrystals was finely regulated by adjusting the layers of the CuAu shell. Specifically, the strain-relaxed Cu/CuAu catalysts exhibit high NO<sub>3</sub>RR performance for NH<sub>3</sub> production, achieving a Faradic efficiency of 89.9% at −0.5 V vs. the reversible hydrogen electrode (RHE) and an exceedingly high yield rate of 11.3 mol h<sup>−1</sup> g<sup>−1</sup> at −0.6 V vs. RHE. Furthermore, Cu/CuAu catalysts show catalytic stability over 10 consecutive cycles and 12-h electrolysis. This atomic-level control of thickness allows precise tuning of the intrinsic strain to optimize catalytic reactivity, offering a promising strategy to enhance the performance of electrocatalytic ammonia synthesis.","PeriodicalId":53121,"journal":{"name":"Chem Catalysis","volume":"16 1","pages":""},"PeriodicalIF":11.5000,"publicationDate":"2025-03-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Strain relaxation enhances ammonia electrosynthesis from nitrate on Cu/CuAu core/shell nanocrystals with ordered intermetallic layers\",\"authors\":\"Qiang Gao, Bingqing Yao, Yuanqi Liu, Lei Shi, Zihao Yan, Libang Xu, Qian He, Huiyuan Zhu\",\"doi\":\"10.1016/j.checat.2025.101328\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Recycling ammonia (NH<sub>3</sub>) via the electrocatalytic nitrate reduction reaction (NO<sub>3</sub>RR) offers a sustainable, energy-efficient solution for closing the nitrogen cycle while simultaneously treating nitrate-rich wastewater. In this work, we synthesized core/shell Cu/CuAu nanocubes with precisely controlled ordered intermetallic layers using a facile seed-mediated method. The compressive surface strain of the nanocrystals was finely regulated by adjusting the layers of the CuAu shell. Specifically, the strain-relaxed Cu/CuAu catalysts exhibit high NO<sub>3</sub>RR performance for NH<sub>3</sub> production, achieving a Faradic efficiency of 89.9% at −0.5 V vs. the reversible hydrogen electrode (RHE) and an exceedingly high yield rate of 11.3 mol h<sup>−1</sup> g<sup>−1</sup> at −0.6 V vs. RHE. Furthermore, Cu/CuAu catalysts show catalytic stability over 10 consecutive cycles and 12-h electrolysis. This atomic-level control of thickness allows precise tuning of the intrinsic strain to optimize catalytic reactivity, offering a promising strategy to enhance the performance of electrocatalytic ammonia synthesis.\",\"PeriodicalId\":53121,\"journal\":{\"name\":\"Chem Catalysis\",\"volume\":\"16 1\",\"pages\":\"\"},\"PeriodicalIF\":11.5000,\"publicationDate\":\"2025-03-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Chem Catalysis\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1016/j.checat.2025.101328\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chem Catalysis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1016/j.checat.2025.101328","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

通过电催化硝酸还原反应(NO3RR)回收氨(NH3)提供了一种可持续、节能的解决方案,在关闭氮循环的同时处理富含硝酸盐的废水。在这项工作中,我们使用一种简单的种子介导方法合成了具有精确控制有序金属间层的核/壳Cu/CuAu纳米立方。通过调整CuAu壳层,可以很好地调节纳米晶体的压缩表面应变。具体而言,菌株松弛Cu/CuAu催化剂在NH3生产中表现出较高的NO3RR性能,与可逆氢电极(RHE)相比,在−0.5 V时的法拉氏效率为89.9%,在−0.6 V时的产率为11.3 mol h−1 g−1。此外,Cu/CuAu催化剂在连续10个循环和12 h的电解中表现出催化稳定性。这种原子级的厚度控制允许精确调整固有应变以优化催化反应性,为提高电催化合成氨的性能提供了一种有前途的策略。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Strain relaxation enhances ammonia electrosynthesis from nitrate on Cu/CuAu core/shell nanocrystals with ordered intermetallic layers

Strain relaxation enhances ammonia electrosynthesis from nitrate on Cu/CuAu core/shell nanocrystals with ordered intermetallic layers
Recycling ammonia (NH3) via the electrocatalytic nitrate reduction reaction (NO3RR) offers a sustainable, energy-efficient solution for closing the nitrogen cycle while simultaneously treating nitrate-rich wastewater. In this work, we synthesized core/shell Cu/CuAu nanocubes with precisely controlled ordered intermetallic layers using a facile seed-mediated method. The compressive surface strain of the nanocrystals was finely regulated by adjusting the layers of the CuAu shell. Specifically, the strain-relaxed Cu/CuAu catalysts exhibit high NO3RR performance for NH3 production, achieving a Faradic efficiency of 89.9% at −0.5 V vs. the reversible hydrogen electrode (RHE) and an exceedingly high yield rate of 11.3 mol h−1 g−1 at −0.6 V vs. RHE. Furthermore, Cu/CuAu catalysts show catalytic stability over 10 consecutive cycles and 12-h electrolysis. This atomic-level control of thickness allows precise tuning of the intrinsic strain to optimize catalytic reactivity, offering a promising strategy to enhance the performance of electrocatalytic ammonia synthesis.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
10.50
自引率
6.40%
发文量
0
期刊介绍: Chem Catalysis is a monthly journal that publishes innovative research on fundamental and applied catalysis, providing a platform for researchers across chemistry, chemical engineering, and related fields. It serves as a premier resource for scientists and engineers in academia and industry, covering heterogeneous, homogeneous, and biocatalysis. Emphasizing transformative methods and technologies, the journal aims to advance understanding, introduce novel catalysts, and connect fundamental insights to real-world applications for societal benefit.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信