多因子相互作用有助于对比北半球中高纬度地区的野火趋势

IF 5.6 1区 农林科学 Q1 AGRONOMY
Hang Zhao , Zhengxiang Zhang , Shuo Zhen , Xin Wang , Yiwei Yin
{"title":"多因子相互作用有助于对比北半球中高纬度地区的野火趋势","authors":"Hang Zhao ,&nbsp;Zhengxiang Zhang ,&nbsp;Shuo Zhen ,&nbsp;Xin Wang ,&nbsp;Yiwei Yin","doi":"10.1016/j.agrformet.2025.110507","DOIUrl":null,"url":null,"abstract":"<div><div>The contrasting changes in wildfires reflect their diverse responses to bioclimates, vegetation dynamics, and human activities. However, how wildfire drivers interact to shape contrasting wildfire dynamics remains unclear. Here, wildfire dynamics at mid–high latitudes (≥30°N) were analyzed using a burned area dataset from 1982 to 2018. We integrated structural equation modeling with fire regime triangle theory to define flammability, fuel, and human ignition as latent variables, thus explaining the major causes of contrasting wildfire trends. Wildfires increased in 2.91 % of land areas and decreased in 8.30 % at mid–high latitudes, exhibiting contrasting trends within and across ecoregions, in which flammability, fuel, and human ignition had impacts on wildfires with ratios of 0.63, 0.56, and 0.50, respectively. Temperature-driven flammability variations led to increasing trends in wildfires in fuel-rich forests, while increasing flammability, combined with reduced fuels from water deficits, caused decreasing trends in wildfires, especially in arid temperate grasslands. Moreover, increased natural and human ignitions led to increasing trends in wildfires in high-latitude ecosystems, whereas intensified human activities suppressed wildfires in densely populated areas, leading to declining wildfire trends. These results suggest that flammability impacts wildfire trends oppositely depending on fuel conditions, and human ignition has polarized effects on wildfire trends due to varying intensity and direction of human activities. Such interactions contribute to contrasting wildfire trends and imply that warmer climates and human activities will exacerbate contrasting wildfire dynamics. Our study improves the understanding of long-term wildfire trends, aids in exploring terrestrial carbon cycles under climate change, and supports practical wildfire management.</div></div>","PeriodicalId":50839,"journal":{"name":"Agricultural and Forest Meteorology","volume":"367 ","pages":"Article 110507"},"PeriodicalIF":5.6000,"publicationDate":"2025-03-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Multifactorial interactions contribute to contrasting wildfire trends at mid–high latitudes of the Northern Hemisphere\",\"authors\":\"Hang Zhao ,&nbsp;Zhengxiang Zhang ,&nbsp;Shuo Zhen ,&nbsp;Xin Wang ,&nbsp;Yiwei Yin\",\"doi\":\"10.1016/j.agrformet.2025.110507\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The contrasting changes in wildfires reflect their diverse responses to bioclimates, vegetation dynamics, and human activities. However, how wildfire drivers interact to shape contrasting wildfire dynamics remains unclear. Here, wildfire dynamics at mid–high latitudes (≥30°N) were analyzed using a burned area dataset from 1982 to 2018. We integrated structural equation modeling with fire regime triangle theory to define flammability, fuel, and human ignition as latent variables, thus explaining the major causes of contrasting wildfire trends. Wildfires increased in 2.91 % of land areas and decreased in 8.30 % at mid–high latitudes, exhibiting contrasting trends within and across ecoregions, in which flammability, fuel, and human ignition had impacts on wildfires with ratios of 0.63, 0.56, and 0.50, respectively. Temperature-driven flammability variations led to increasing trends in wildfires in fuel-rich forests, while increasing flammability, combined with reduced fuels from water deficits, caused decreasing trends in wildfires, especially in arid temperate grasslands. Moreover, increased natural and human ignitions led to increasing trends in wildfires in high-latitude ecosystems, whereas intensified human activities suppressed wildfires in densely populated areas, leading to declining wildfire trends. These results suggest that flammability impacts wildfire trends oppositely depending on fuel conditions, and human ignition has polarized effects on wildfire trends due to varying intensity and direction of human activities. Such interactions contribute to contrasting wildfire trends and imply that warmer climates and human activities will exacerbate contrasting wildfire dynamics. Our study improves the understanding of long-term wildfire trends, aids in exploring terrestrial carbon cycles under climate change, and supports practical wildfire management.</div></div>\",\"PeriodicalId\":50839,\"journal\":{\"name\":\"Agricultural and Forest Meteorology\",\"volume\":\"367 \",\"pages\":\"Article 110507\"},\"PeriodicalIF\":5.6000,\"publicationDate\":\"2025-03-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Agricultural and Forest Meteorology\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0168192325001273\",\"RegionNum\":1,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"AGRONOMY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Agricultural and Forest Meteorology","FirstCategoryId":"97","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0168192325001273","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AGRONOMY","Score":null,"Total":0}
引用次数: 0

摘要

野火的变化反映了其对生物气候、植被动态和人类活动的不同响应。然而,野火驱动因素如何相互作用以形成对比的野火动态仍不清楚。利用1982年至2018年的烧伤面积数据,分析了中高纬度地区(≥30°N)的野火动态。我们将结构方程建模与火灾状态三角理论相结合,将可燃性、燃料和人为点火定义为潜在变量,从而解释了野火趋势对比的主要原因。在中高纬度地区,森林火灾增加了2.91%,减少了8.30%,在生态区域内和跨生态区域呈现出不同的趋势,可燃性、燃料和人为点火对森林火灾的影响分别为0.63、0.56和0.50。温度驱动的可燃性变化导致燃料丰富的森林中野火的趋势增加,而可燃性的增加,加上缺水导致的燃料减少,导致野火的趋势减少,特别是在干旱的温带草原。此外,自然和人为火源的增加导致高纬度生态系统野火趋势增加,而人类活动的加剧抑制了人口稠密地区的野火,导致野火趋势下降。这些结果表明,可燃性对野火趋势的影响取决于燃料条件,而人类点火对野火趋势的影响由于人类活动的强度和方向的不同而呈两极分化。这种相互作用有助于野火趋势的对比,并意味着气候变暖和人类活动将加剧野火动态的对比。我们的研究提高了对野火长期趋势的认识,有助于探索气候变化下的陆地碳循环,并为实际的野火管理提供支持。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Multifactorial interactions contribute to contrasting wildfire trends at mid–high latitudes of the Northern Hemisphere
The contrasting changes in wildfires reflect their diverse responses to bioclimates, vegetation dynamics, and human activities. However, how wildfire drivers interact to shape contrasting wildfire dynamics remains unclear. Here, wildfire dynamics at mid–high latitudes (≥30°N) were analyzed using a burned area dataset from 1982 to 2018. We integrated structural equation modeling with fire regime triangle theory to define flammability, fuel, and human ignition as latent variables, thus explaining the major causes of contrasting wildfire trends. Wildfires increased in 2.91 % of land areas and decreased in 8.30 % at mid–high latitudes, exhibiting contrasting trends within and across ecoregions, in which flammability, fuel, and human ignition had impacts on wildfires with ratios of 0.63, 0.56, and 0.50, respectively. Temperature-driven flammability variations led to increasing trends in wildfires in fuel-rich forests, while increasing flammability, combined with reduced fuels from water deficits, caused decreasing trends in wildfires, especially in arid temperate grasslands. Moreover, increased natural and human ignitions led to increasing trends in wildfires in high-latitude ecosystems, whereas intensified human activities suppressed wildfires in densely populated areas, leading to declining wildfire trends. These results suggest that flammability impacts wildfire trends oppositely depending on fuel conditions, and human ignition has polarized effects on wildfire trends due to varying intensity and direction of human activities. Such interactions contribute to contrasting wildfire trends and imply that warmer climates and human activities will exacerbate contrasting wildfire dynamics. Our study improves the understanding of long-term wildfire trends, aids in exploring terrestrial carbon cycles under climate change, and supports practical wildfire management.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
10.30
自引率
9.70%
发文量
415
审稿时长
69 days
期刊介绍: Agricultural and Forest Meteorology is an international journal for the publication of original articles and reviews on the inter-relationship between meteorology, agriculture, forestry, and natural ecosystems. Emphasis is on basic and applied scientific research relevant to practical problems in the field of plant and soil sciences, ecology and biogeochemistry as affected by weather as well as climate variability and change. Theoretical models should be tested against experimental data. Articles must appeal to an international audience. Special issues devoted to single topics are also published. Typical topics include canopy micrometeorology (e.g. canopy radiation transfer, turbulence near the ground, evapotranspiration, energy balance, fluxes of trace gases), micrometeorological instrumentation (e.g., sensors for trace gases, flux measurement instruments, radiation measurement techniques), aerobiology (e.g. the dispersion of pollen, spores, insects and pesticides), biometeorology (e.g. the effect of weather and climate on plant distribution, crop yield, water-use efficiency, and plant phenology), forest-fire/weather interactions, and feedbacks from vegetation to weather and the climate system.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信