全球蝴蝶多样性热点在全球变暖中受到威胁

IF 13.9 1区 生物学 Q1 ECOLOGY
Stefan Pinkert, Nina Farwig, Akito Y. Kawahara, Walter Jetz
{"title":"全球蝴蝶多样性热点在全球变暖中受到威胁","authors":"Stefan Pinkert, Nina Farwig, Akito Y. Kawahara, Walter Jetz","doi":"10.1038/s41559-025-02664-0","DOIUrl":null,"url":null,"abstract":"<p>Insects are in decline and threatened by climate change, yet lack of globally comprehensive information limits the understanding and management of this crisis. Here we uncover a strong concentration of butterfly diversity in rare and rapidly shrinking high-elevation climates. Integrating comprehensive phylogenetic and geographic range data for 12,119 species, we find that global centres of butterfly richness, range rarity and phylogenetic diversity are unusually concentrated in tropical and subtropical mountain systems. Two-thirds of the assessed species are primarily mountain dwelling and mountains hold 3.5 times more butterfly hotspots (top 5%) than lowlands. These hotspots only partially overlap with those of ants, terrestrial vertebrates and vascular plants (14–36%), while butterfly diversity is uniquely concentrated above 2,000 m elevation. We project that up to 64% of the temperature niche space of butterflies in tropical realms will erode by 2070, with the geographically restricted temperature conditions of mountains potentially turning these from refugia to traps for butterfly diversity. Our study identifies critical conservation priorities for butterflies and underscores the need for quantitative global assessments of at least select insect groups to help mitigate biodiversity loss in a rapidly warming world.</p>","PeriodicalId":18835,"journal":{"name":"Nature ecology & evolution","volume":"9 1","pages":""},"PeriodicalIF":13.9000,"publicationDate":"2025-03-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Global hotspots of butterfly diversity are threatened in a warming world\",\"authors\":\"Stefan Pinkert, Nina Farwig, Akito Y. Kawahara, Walter Jetz\",\"doi\":\"10.1038/s41559-025-02664-0\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Insects are in decline and threatened by climate change, yet lack of globally comprehensive information limits the understanding and management of this crisis. Here we uncover a strong concentration of butterfly diversity in rare and rapidly shrinking high-elevation climates. Integrating comprehensive phylogenetic and geographic range data for 12,119 species, we find that global centres of butterfly richness, range rarity and phylogenetic diversity are unusually concentrated in tropical and subtropical mountain systems. Two-thirds of the assessed species are primarily mountain dwelling and mountains hold 3.5 times more butterfly hotspots (top 5%) than lowlands. These hotspots only partially overlap with those of ants, terrestrial vertebrates and vascular plants (14–36%), while butterfly diversity is uniquely concentrated above 2,000 m elevation. We project that up to 64% of the temperature niche space of butterflies in tropical realms will erode by 2070, with the geographically restricted temperature conditions of mountains potentially turning these from refugia to traps for butterfly diversity. Our study identifies critical conservation priorities for butterflies and underscores the need for quantitative global assessments of at least select insect groups to help mitigate biodiversity loss in a rapidly warming world.</p>\",\"PeriodicalId\":18835,\"journal\":{\"name\":\"Nature ecology & evolution\",\"volume\":\"9 1\",\"pages\":\"\"},\"PeriodicalIF\":13.9000,\"publicationDate\":\"2025-03-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nature ecology & evolution\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1038/s41559-025-02664-0\",\"RegionNum\":1,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ECOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature ecology & evolution","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1038/s41559-025-02664-0","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ECOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

昆虫数量正在减少并受到气候变化的威胁,但缺乏全球全面的信息限制了对这一危机的理解和管理。在这里,我们发现了蝴蝶多样性的高度集中在罕见的和迅速缩小的高海拔气候。综合12119种蝴蝶的系统发育和地理范围数据,我们发现全球蝴蝶丰富度、范围稀有度和系统发育多样性中心异常地集中在热带和亚热带山地系统。三分之二的被评估物种主要生活在山区,山区的蝴蝶热点(前5%)是低地的3.5倍。这些热点仅与蚂蚁、陆生脊椎动物和维管植物的热点部分重叠(14-36%),而蝴蝶多样性独特地集中在海拔2000 m以上。我们预测,到2070年,热带地区高达64%的蝴蝶温度生态位空间将被侵蚀,山区地理上有限的温度条件可能会使这些区域从蝴蝶多样性的避难所变成陷阱。我们的研究确定了蝴蝶的关键保护优先事项,并强调了至少需要对选定的昆虫群体进行定量全球评估,以帮助减轻快速变暖的世界中生物多样性的丧失。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Global hotspots of butterfly diversity are threatened in a warming world

Global hotspots of butterfly diversity are threatened in a warming world

Insects are in decline and threatened by climate change, yet lack of globally comprehensive information limits the understanding and management of this crisis. Here we uncover a strong concentration of butterfly diversity in rare and rapidly shrinking high-elevation climates. Integrating comprehensive phylogenetic and geographic range data for 12,119 species, we find that global centres of butterfly richness, range rarity and phylogenetic diversity are unusually concentrated in tropical and subtropical mountain systems. Two-thirds of the assessed species are primarily mountain dwelling and mountains hold 3.5 times more butterfly hotspots (top 5%) than lowlands. These hotspots only partially overlap with those of ants, terrestrial vertebrates and vascular plants (14–36%), while butterfly diversity is uniquely concentrated above 2,000 m elevation. We project that up to 64% of the temperature niche space of butterflies in tropical realms will erode by 2070, with the geographically restricted temperature conditions of mountains potentially turning these from refugia to traps for butterfly diversity. Our study identifies critical conservation priorities for butterflies and underscores the need for quantitative global assessments of at least select insect groups to help mitigate biodiversity loss in a rapidly warming world.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Nature ecology & evolution
Nature ecology & evolution Agricultural and Biological Sciences-Ecology, Evolution, Behavior and Systematics
CiteScore
22.20
自引率
2.40%
发文量
282
期刊介绍: Nature Ecology & Evolution is interested in the full spectrum of ecological and evolutionary biology, encompassing approaches at the molecular, organismal, population, community and ecosystem levels, as well as relevant parts of the social sciences. Nature Ecology & Evolution provides a place where all researchers and policymakers interested in all aspects of life's diversity can come together to learn about the most accomplished and significant advances in the field and to discuss topical issues. An online-only monthly journal, our broad scope ensures that the research published reaches the widest possible audience of scientists.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信