最小合成细胞的主动膜变形

IF 17.6 1区 物理与天体物理 Q1 PHYSICS, MULTIDISCIPLINARY
Alfredo Sciortino, Hammad A. Faizi, Dmitry A. Fedosov, Layne Frechette, Petia M. Vlahovska, Gerhard Gompper, Andreas R. Bausch
{"title":"最小合成细胞的主动膜变形","authors":"Alfredo Sciortino, Hammad A. Faizi, Dmitry A. Fedosov, Layne Frechette, Petia M. Vlahovska, Gerhard Gompper, Andreas R. Bausch","doi":"10.1038/s41567-025-02839-3","DOIUrl":null,"url":null,"abstract":"<p>Living cells can adapt their shape in response to their environment, a process driven by the interaction between their flexible membrane and the activity of the underlying cytoskeleton. However, the precise physical mechanisms of this coupling remain unclear. Here we show how cytoskeletal forces acting on a biomimetic membrane affect its deformations. Using a minimal cell model that consists of an active network of microtubules and molecular motors encapsulated inside lipid vesicles, we observe large shape fluctuations and travelling membrane deformations. Quantitative analysis of membrane and microtubule dynamics demonstrates how active forces set the temporal scale of vesicle fluctuations, giving rise to fluctuation spectra that differ in both their spatial and temporal decays from their counterparts in thermal equilibrium. Using simulations, we extend the classical framework of membrane fluctuations to active cytoskeleton-driven vesicles, demonstrating how correlated activity governs membrane dynamics and the roles of confinement, membrane material properties and cytoskeletal forces. Our findings provide a quantitative foundation for understanding the shape-morphing abilities of living cells.</p>","PeriodicalId":19100,"journal":{"name":"Nature Physics","volume":"57 6 1","pages":""},"PeriodicalIF":17.6000,"publicationDate":"2025-03-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Active membrane deformations of a minimal synthetic cell\",\"authors\":\"Alfredo Sciortino, Hammad A. Faizi, Dmitry A. Fedosov, Layne Frechette, Petia M. Vlahovska, Gerhard Gompper, Andreas R. Bausch\",\"doi\":\"10.1038/s41567-025-02839-3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Living cells can adapt their shape in response to their environment, a process driven by the interaction between their flexible membrane and the activity of the underlying cytoskeleton. However, the precise physical mechanisms of this coupling remain unclear. Here we show how cytoskeletal forces acting on a biomimetic membrane affect its deformations. Using a minimal cell model that consists of an active network of microtubules and molecular motors encapsulated inside lipid vesicles, we observe large shape fluctuations and travelling membrane deformations. Quantitative analysis of membrane and microtubule dynamics demonstrates how active forces set the temporal scale of vesicle fluctuations, giving rise to fluctuation spectra that differ in both their spatial and temporal decays from their counterparts in thermal equilibrium. Using simulations, we extend the classical framework of membrane fluctuations to active cytoskeleton-driven vesicles, demonstrating how correlated activity governs membrane dynamics and the roles of confinement, membrane material properties and cytoskeletal forces. Our findings provide a quantitative foundation for understanding the shape-morphing abilities of living cells.</p>\",\"PeriodicalId\":19100,\"journal\":{\"name\":\"Nature Physics\",\"volume\":\"57 6 1\",\"pages\":\"\"},\"PeriodicalIF\":17.6000,\"publicationDate\":\"2025-03-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nature Physics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1038/s41567-025-02839-3\",\"RegionNum\":1,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PHYSICS, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Physics","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1038/s41567-025-02839-3","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

活细胞可以根据环境调整自己的形状,这一过程是由其柔性膜和底层细胞骨架活性之间的相互作用驱动的。然而,这种耦合的确切物理机制仍不清楚。在这里,我们展示了细胞骨架力如何作用于仿生膜上影响其变形。使用由微管和分子马达组成的活性网络包裹在脂质囊泡内的最小细胞模型,我们观察到大的形状波动和移动膜变形。膜和微管动力学的定量分析表明,主动力如何设定囊泡波动的时间尺度,从而产生与热平衡中对应的波动光谱在空间和时间衰减上不同的波动光谱。通过模拟,我们将膜波动的经典框架扩展到活性细胞骨架驱动的囊泡,展示了相关活性如何控制膜动力学以及约束、膜材料特性和细胞骨架力的作用。我们的发现为理解活细胞的形状变形能力提供了定量基础。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Active membrane deformations of a minimal synthetic cell

Active membrane deformations of a minimal synthetic cell

Living cells can adapt their shape in response to their environment, a process driven by the interaction between their flexible membrane and the activity of the underlying cytoskeleton. However, the precise physical mechanisms of this coupling remain unclear. Here we show how cytoskeletal forces acting on a biomimetic membrane affect its deformations. Using a minimal cell model that consists of an active network of microtubules and molecular motors encapsulated inside lipid vesicles, we observe large shape fluctuations and travelling membrane deformations. Quantitative analysis of membrane and microtubule dynamics demonstrates how active forces set the temporal scale of vesicle fluctuations, giving rise to fluctuation spectra that differ in both their spatial and temporal decays from their counterparts in thermal equilibrium. Using simulations, we extend the classical framework of membrane fluctuations to active cytoskeleton-driven vesicles, demonstrating how correlated activity governs membrane dynamics and the roles of confinement, membrane material properties and cytoskeletal forces. Our findings provide a quantitative foundation for understanding the shape-morphing abilities of living cells.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Nature Physics
Nature Physics 物理-物理:综合
CiteScore
30.40
自引率
2.00%
发文量
349
审稿时长
4-8 weeks
期刊介绍: Nature Physics is dedicated to publishing top-tier original research in physics with a fair and rigorous review process. It provides high visibility and access to a broad readership, maintaining high standards in copy editing and production, ensuring rapid publication, and maintaining independence from academic societies and other vested interests. The journal presents two main research paper formats: Letters and Articles. Alongside primary research, Nature Physics serves as a central source for valuable information within the physics community through Review Articles, News & Views, Research Highlights covering crucial developments across the physics literature, Commentaries, Book Reviews, and Correspondence.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信