N掺杂引入的纳米膜晶格缺陷促进自由基氧的产生,用于快速光催化消除接触感染

IF 19 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Renyuan Deng, Xiangmei Liu, Jin Huang, Yi Wang, Dafu Chen, Chaofeng Wang, Khin Wee Lai, Congyang Mao, Guangrong Qian, Yufeng Zheng, Shuilin Wu
{"title":"N掺杂引入的纳米膜晶格缺陷促进自由基氧的产生,用于快速光催化消除接触感染","authors":"Renyuan Deng,&nbsp;Xiangmei Liu,&nbsp;Jin Huang,&nbsp;Yi Wang,&nbsp;Dafu Chen,&nbsp;Chaofeng Wang,&nbsp;Khin Wee Lai,&nbsp;Congyang Mao,&nbsp;Guangrong Qian,&nbsp;Yufeng Zheng,&nbsp;Shuilin Wu","doi":"10.1002/adfm.202500256","DOIUrl":null,"url":null,"abstract":"<p>Contact infection is accelerating the spread of pathogenic bacteria, threatening the health of people all over the world. Herein, photoresponsive TiO<sub>2</sub>/N-doped ZnO (TiO<sub>2</sub>/N-ZnO) nanofilms are synthesized using atomic layer deposition and the sol–gel method to rapidly kill bacteria on electronic touch screens by strengthened photocatalytic sterilization. The enhancement of the photocatalytic performance of TiO<sub>2</sub>/ZnO is significantly attributed to the oxygen vacancy and crystal defect induced by nitrogen element doping, leading to the production of an increased quantity of reactive oxygen species from TiO<sub>2</sub>/N-ZnO. Further, when bacteria engage with the nanofilm, there is an occurrence of electron transfer between the TiO<sub>2</sub>/N-ZnO and the bacterial film, thereby consequently disturbing the electron equilibrium on the bacterial film. Upon exposure to simulated sunlight for a duration of 3 min (for <i>Staphylococcus aureus</i>; <i>S. aureus</i>) or 10 min (for <i>Escherichia coli</i>; <i>E. coli</i>), TiO<sub>2</sub>/N-ZnO demonstrates superior antibacterial effects (&gt;95%) on both bacterial strains. With the illumination time extended to 20 min, the antibacterial efficacy of TiO<sub>2</sub>/N-ZnO against <i>S. aureus</i> and <i>E. coli</i> reaches up to 100%. Concurrently, the TiO<sub>2</sub>/N-ZnO nanofilms demonstrate commendable light transmittance (&gt;85%) and biocompatibility. As such, this study may offer a potential methodology for antimicrobial applications in electronic touch screens.</p>","PeriodicalId":112,"journal":{"name":"Advanced Functional Materials","volume":"35 34","pages":""},"PeriodicalIF":19.0000,"publicationDate":"2025-03-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The Lattice Defects of Nanofilm Introduced by N Doping Promotes Radical Oxygen Species Production for Rapid Photocatalytic Elimination of Contact Infection\",\"authors\":\"Renyuan Deng,&nbsp;Xiangmei Liu,&nbsp;Jin Huang,&nbsp;Yi Wang,&nbsp;Dafu Chen,&nbsp;Chaofeng Wang,&nbsp;Khin Wee Lai,&nbsp;Congyang Mao,&nbsp;Guangrong Qian,&nbsp;Yufeng Zheng,&nbsp;Shuilin Wu\",\"doi\":\"10.1002/adfm.202500256\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Contact infection is accelerating the spread of pathogenic bacteria, threatening the health of people all over the world. Herein, photoresponsive TiO<sub>2</sub>/N-doped ZnO (TiO<sub>2</sub>/N-ZnO) nanofilms are synthesized using atomic layer deposition and the sol–gel method to rapidly kill bacteria on electronic touch screens by strengthened photocatalytic sterilization. The enhancement of the photocatalytic performance of TiO<sub>2</sub>/ZnO is significantly attributed to the oxygen vacancy and crystal defect induced by nitrogen element doping, leading to the production of an increased quantity of reactive oxygen species from TiO<sub>2</sub>/N-ZnO. Further, when bacteria engage with the nanofilm, there is an occurrence of electron transfer between the TiO<sub>2</sub>/N-ZnO and the bacterial film, thereby consequently disturbing the electron equilibrium on the bacterial film. Upon exposure to simulated sunlight for a duration of 3 min (for <i>Staphylococcus aureus</i>; <i>S. aureus</i>) or 10 min (for <i>Escherichia coli</i>; <i>E. coli</i>), TiO<sub>2</sub>/N-ZnO demonstrates superior antibacterial effects (&gt;95%) on both bacterial strains. With the illumination time extended to 20 min, the antibacterial efficacy of TiO<sub>2</sub>/N-ZnO against <i>S. aureus</i> and <i>E. coli</i> reaches up to 100%. Concurrently, the TiO<sub>2</sub>/N-ZnO nanofilms demonstrate commendable light transmittance (&gt;85%) and biocompatibility. As such, this study may offer a potential methodology for antimicrobial applications in electronic touch screens.</p>\",\"PeriodicalId\":112,\"journal\":{\"name\":\"Advanced Functional Materials\",\"volume\":\"35 34\",\"pages\":\"\"},\"PeriodicalIF\":19.0000,\"publicationDate\":\"2025-03-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advanced Functional Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://advanced.onlinelibrary.wiley.com/doi/10.1002/adfm.202500256\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Functional Materials","FirstCategoryId":"88","ListUrlMain":"https://advanced.onlinelibrary.wiley.com/doi/10.1002/adfm.202500256","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

接触感染正在加速致病菌的传播,威胁着全世界人民的健康。本文采用原子层沉积和溶胶-凝胶法合成了光响应型TiO2/N掺杂ZnO (TiO2/N‐ZnO)纳米膜,通过强化光催化杀菌快速杀灭电子触摸屏上的细菌。TiO2/N - ZnO光催化性能的增强主要归因于氮元素掺杂引起的氧空位和晶体缺陷,导致TiO2/N - ZnO产生的活性氧数量增加。此外,当细菌与纳米膜接触时,TiO2/N‐ZnO和细菌膜之间会发生电子转移,从而扰乱细菌膜上的电子平衡。在模拟阳光下暴露3分钟(对于金黄色葡萄球菌;金黄色葡萄球菌)或10分钟(大肠杆菌;大肠杆菌),TiO2/N‐ZnO对这两种菌株都有较好的抑菌效果(>95%)。当光照时间延长至20 min时,TiO2/N‐ZnO对金黄色葡萄球菌和大肠杆菌的抑菌效果可达100%。同时,TiO2/N‐ZnO纳米膜表现出良好的透光率(>85%)和生物相容性。因此,这项研究可能为电子触摸屏的抗菌应用提供一种潜在的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

The Lattice Defects of Nanofilm Introduced by N Doping Promotes Radical Oxygen Species Production for Rapid Photocatalytic Elimination of Contact Infection

The Lattice Defects of Nanofilm Introduced by N Doping Promotes Radical Oxygen Species Production for Rapid Photocatalytic Elimination of Contact Infection

The Lattice Defects of Nanofilm Introduced by N Doping Promotes Radical Oxygen Species Production for Rapid Photocatalytic Elimination of Contact Infection

The Lattice Defects of Nanofilm Introduced by N Doping Promotes Radical Oxygen Species Production for Rapid Photocatalytic Elimination of Contact Infection

The Lattice Defects of Nanofilm Introduced by N Doping Promotes Radical Oxygen Species Production for Rapid Photocatalytic Elimination of Contact Infection

Contact infection is accelerating the spread of pathogenic bacteria, threatening the health of people all over the world. Herein, photoresponsive TiO2/N-doped ZnO (TiO2/N-ZnO) nanofilms are synthesized using atomic layer deposition and the sol–gel method to rapidly kill bacteria on electronic touch screens by strengthened photocatalytic sterilization. The enhancement of the photocatalytic performance of TiO2/ZnO is significantly attributed to the oxygen vacancy and crystal defect induced by nitrogen element doping, leading to the production of an increased quantity of reactive oxygen species from TiO2/N-ZnO. Further, when bacteria engage with the nanofilm, there is an occurrence of electron transfer between the TiO2/N-ZnO and the bacterial film, thereby consequently disturbing the electron equilibrium on the bacterial film. Upon exposure to simulated sunlight for a duration of 3 min (for Staphylococcus aureus; S. aureus) or 10 min (for Escherichia coli; E. coli), TiO2/N-ZnO demonstrates superior antibacterial effects (>95%) on both bacterial strains. With the illumination time extended to 20 min, the antibacterial efficacy of TiO2/N-ZnO against S. aureus and E. coli reaches up to 100%. Concurrently, the TiO2/N-ZnO nanofilms demonstrate commendable light transmittance (>85%) and biocompatibility. As such, this study may offer a potential methodology for antimicrobial applications in electronic touch screens.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Advanced Functional Materials
Advanced Functional Materials 工程技术-材料科学:综合
CiteScore
29.50
自引率
4.20%
发文量
2086
审稿时长
2.1 months
期刊介绍: Firmly established as a top-tier materials science journal, Advanced Functional Materials reports breakthrough research in all aspects of materials science, including nanotechnology, chemistry, physics, and biology every week. Advanced Functional Materials is known for its rapid and fair peer review, quality content, and high impact, making it the first choice of the international materials science community.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信