铌酸锂薄膜单片集成超宽带光子接收器。

Marco Moller de Freitas, Xiaofeng Zhu, Md Saheed Ullah, Shouyuan Shi, Peng Yao, Garrett Schneider, Dennis W Prather
{"title":"铌酸锂薄膜单片集成超宽带光子接收器。","authors":"Marco Moller de Freitas, Xiaofeng Zhu, Md Saheed Ullah, Shouyuan Shi, Peng Yao, Garrett Schneider, Dennis W Prather","doi":"10.1038/s44172-025-00393-7","DOIUrl":null,"url":null,"abstract":"<p><p>As the demand for data capacity in wireless networks and mobile communications continues to grow, they are moving toward higher carrier frequencies and wider modulation bandwidths. Unfortunately, electronic device performance degrades in association with increased frequency and modulation bandwidths, which inhibits the application of conventional microwave architectures, particularly in the millimeter wave and terahertz regimes. Alternatively, microwave photonic systems address these challenges by offering device and system performance with exceptionally higher operational bandwidths. The challenge, however, is the ability to monolithically integrate both electronic and photonic devices into functional components that provide ultra-wideband performance up into the millimeter wave and terahertz regions. In particular, such integration remains a major technical challenge due to the high dielectric permittivity of commonly used material platforms for photonic integrated circuits, such as silicon, indium phosphide, and lithium niobate. In this paper, we present a photonic receiver consisting of a broadband antenna and a low-drive-voltage modulator monolithically integrated on thin-film lithium niobate with a quartz handle. A free-space data link is demonstrated, achieving data rates up to 2.7 Gbps using quadrature amplitude modulation, with error vector magnitude as low as 3%. This work demonstrates the potential of thin-film lithium niobate for high-frequency, monolithically integrated radiofrequency and photonic devices to enable ultra-wideband millimeter wave-to-terahertz communication systems.</p>","PeriodicalId":72644,"journal":{"name":"Communications engineering","volume":"4 1","pages":"55"},"PeriodicalIF":0.0000,"publicationDate":"2025-03-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11928564/pdf/","citationCount":"0","resultStr":"{\"title\":\"Monolithically integrated ultra-wideband photonic receiver on thin film lithium niobate.\",\"authors\":\"Marco Moller de Freitas, Xiaofeng Zhu, Md Saheed Ullah, Shouyuan Shi, Peng Yao, Garrett Schneider, Dennis W Prather\",\"doi\":\"10.1038/s44172-025-00393-7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>As the demand for data capacity in wireless networks and mobile communications continues to grow, they are moving toward higher carrier frequencies and wider modulation bandwidths. Unfortunately, electronic device performance degrades in association with increased frequency and modulation bandwidths, which inhibits the application of conventional microwave architectures, particularly in the millimeter wave and terahertz regimes. Alternatively, microwave photonic systems address these challenges by offering device and system performance with exceptionally higher operational bandwidths. The challenge, however, is the ability to monolithically integrate both electronic and photonic devices into functional components that provide ultra-wideband performance up into the millimeter wave and terahertz regions. In particular, such integration remains a major technical challenge due to the high dielectric permittivity of commonly used material platforms for photonic integrated circuits, such as silicon, indium phosphide, and lithium niobate. In this paper, we present a photonic receiver consisting of a broadband antenna and a low-drive-voltage modulator monolithically integrated on thin-film lithium niobate with a quartz handle. A free-space data link is demonstrated, achieving data rates up to 2.7 Gbps using quadrature amplitude modulation, with error vector magnitude as low as 3%. This work demonstrates the potential of thin-film lithium niobate for high-frequency, monolithically integrated radiofrequency and photonic devices to enable ultra-wideband millimeter wave-to-terahertz communication systems.</p>\",\"PeriodicalId\":72644,\"journal\":{\"name\":\"Communications engineering\",\"volume\":\"4 1\",\"pages\":\"55\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-03-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11928564/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Communications engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1038/s44172-025-00393-7\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1038/s44172-025-00393-7","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

随着无线网络和移动通信对数据容量的需求不断增长,它们正朝着更高的载波频率和更宽的调制带宽发展。不幸的是,电子设备的性能随着频率和调制带宽的增加而下降,这抑制了传统微波架构的应用,特别是在毫米波和太赫兹频段。另外,微波光子系统通过提供具有极高操作带宽的设备和系统性能来解决这些挑战。然而,挑战在于如何将电子和光子器件单片集成到功能组件中,从而提供毫米波和太赫兹区域的超宽带性能。特别是,这种集成仍然是一个主要的技术挑战,因为光子集成电路常用的材料平台,如硅,磷化铟和铌酸锂的高介电常数。在本文中,我们提出了一种由宽带天线和低驱动电压调制器组成的光子接收器,该接收器采用石英手柄单片集成在铌酸锂薄膜上。展示了一种自由空间数据链路,使用正交幅度调制实现高达2.7 Gbps的数据速率,误差矢量幅度低至3%。这项工作证明了薄膜铌酸锂在高频、单片集成射频和光子器件方面的潜力,可以实现超宽带毫米波到太赫兹的通信系统。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Monolithically integrated ultra-wideband photonic receiver on thin film lithium niobate.

As the demand for data capacity in wireless networks and mobile communications continues to grow, they are moving toward higher carrier frequencies and wider modulation bandwidths. Unfortunately, electronic device performance degrades in association with increased frequency and modulation bandwidths, which inhibits the application of conventional microwave architectures, particularly in the millimeter wave and terahertz regimes. Alternatively, microwave photonic systems address these challenges by offering device and system performance with exceptionally higher operational bandwidths. The challenge, however, is the ability to monolithically integrate both electronic and photonic devices into functional components that provide ultra-wideband performance up into the millimeter wave and terahertz regions. In particular, such integration remains a major technical challenge due to the high dielectric permittivity of commonly used material platforms for photonic integrated circuits, such as silicon, indium phosphide, and lithium niobate. In this paper, we present a photonic receiver consisting of a broadband antenna and a low-drive-voltage modulator monolithically integrated on thin-film lithium niobate with a quartz handle. A free-space data link is demonstrated, achieving data rates up to 2.7 Gbps using quadrature amplitude modulation, with error vector magnitude as low as 3%. This work demonstrates the potential of thin-film lithium niobate for high-frequency, monolithically integrated radiofrequency and photonic devices to enable ultra-wideband millimeter wave-to-terahertz communication systems.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信