不同剩余采食量蛋鸭的盲肠微生物群与肝脏基因之间的相互作用

IF 4.9 Q1 MICROBIOLOGY
Rongbing Guo, Yuguang Chang, Dandan Wang, Hanxue Sun, Tiantian Gu, Yibo Zong, Shiheng Zhou, Zhizhou Huang, Li Chen, Yong Tian, Wenwu Xu, Lizhi Lu, Tao Zeng
{"title":"不同剩余采食量蛋鸭的盲肠微生物群与肝脏基因之间的相互作用","authors":"Rongbing Guo, Yuguang Chang, Dandan Wang, Hanxue Sun, Tiantian Gu, Yibo Zong, Shiheng Zhou, Zhizhou Huang, Li Chen, Yong Tian, Wenwu Xu, Lizhi Lu, Tao Zeng","doi":"10.1186/s42523-025-00394-z","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>The gut microbiota exerts a critical influence on energy metabolism homeostasis and productive performance in avian species. Given the diminishing availability of arable land and intensifying competition for finite resources between livestock production and human populations, the agricultural sector faces dual imperatives to enhance productive efficiency while mitigating ecological footprints. Within this paradigm, optimizing nutrient assimilation efficiency in commercial waterfowl operations emerges as a strategic priority. This investigation employs an integrated multi-omics approach framework (metagenomic, metabolomic, and transcriptomic analyses) to elucidate the mechanistic relationships between cecal microbial consortia and feed conversion ratios in Shan Partridge ducks.</p><p><strong>Results: </strong>Based on the analysis of metagenome data, a total of 34 phyla, 1033 genera and 3262 species of bacteria were identified by metagenomic sequencing analysis. At the phylum level, 31 phylums had higher mean abundance in the low residual feed intake ( LRFI) group than in the high residual feed intake (HRFI) group. Among them, the expression of microbiome Elusimicrobiota was significantly higher in the LRFI group than in the HRFI group (P < 0.05). And we also found a significant differences in secondary metabolites biosynthesis, transport, and catabolism pathways between the two groups in microbial function (P < 0.05). Based on metabolomic analysis, 17 different metabolites were found. Among them, Lipids and lipid molecules accounted for the highest proportion. Whereas the liver is very closely related to lipid metabolism, we are close to understanding whether an individual's energy utilization efficiency is related to gene expression in the liver. We selected six ducks from each group of six ducks each for liver transcriptome analysis. A total of 322 differential genes were identified in the transcriptome analysis results, and 319 genes were significantly down-regulated. Among them, we found that prostaglandin endoperoxide synthase 2 (PTGS2) might be a key hub gene regulating RFI by co-occurrence network analysis. Interestingly, the differential gene PTGS2 was enriched in the arachidonic acid pathway at the same time as the differential metabolite 15-deoxy-delta12,14-prostaglandin J2 (15d-PGJ2). In addition, the results of the association analysis of differential metabolites with microorganisms also revealed a significant negative correlation between 15d-PGJ2 and Elusimicrobiota.</p><p><strong>Conclusion: </strong>Based on comprehensive analysis of the research results, we speculate that the Elusimicrobiota may affect the feed utilization efficiency in ducks by regulating the expression of the PTGS2 gene.</p>","PeriodicalId":72201,"journal":{"name":"Animal microbiome","volume":"7 1","pages":"30"},"PeriodicalIF":4.9000,"publicationDate":"2025-03-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11929276/pdf/","citationCount":"0","resultStr":"{\"title\":\"Interaction between cecal microbiota and liver genes of laying ducks with different residual feed intake.\",\"authors\":\"Rongbing Guo, Yuguang Chang, Dandan Wang, Hanxue Sun, Tiantian Gu, Yibo Zong, Shiheng Zhou, Zhizhou Huang, Li Chen, Yong Tian, Wenwu Xu, Lizhi Lu, Tao Zeng\",\"doi\":\"10.1186/s42523-025-00394-z\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>The gut microbiota exerts a critical influence on energy metabolism homeostasis and productive performance in avian species. Given the diminishing availability of arable land and intensifying competition for finite resources between livestock production and human populations, the agricultural sector faces dual imperatives to enhance productive efficiency while mitigating ecological footprints. Within this paradigm, optimizing nutrient assimilation efficiency in commercial waterfowl operations emerges as a strategic priority. This investigation employs an integrated multi-omics approach framework (metagenomic, metabolomic, and transcriptomic analyses) to elucidate the mechanistic relationships between cecal microbial consortia and feed conversion ratios in Shan Partridge ducks.</p><p><strong>Results: </strong>Based on the analysis of metagenome data, a total of 34 phyla, 1033 genera and 3262 species of bacteria were identified by metagenomic sequencing analysis. At the phylum level, 31 phylums had higher mean abundance in the low residual feed intake ( LRFI) group than in the high residual feed intake (HRFI) group. Among them, the expression of microbiome Elusimicrobiota was significantly higher in the LRFI group than in the HRFI group (P < 0.05). And we also found a significant differences in secondary metabolites biosynthesis, transport, and catabolism pathways between the two groups in microbial function (P < 0.05). Based on metabolomic analysis, 17 different metabolites were found. Among them, Lipids and lipid molecules accounted for the highest proportion. Whereas the liver is very closely related to lipid metabolism, we are close to understanding whether an individual's energy utilization efficiency is related to gene expression in the liver. We selected six ducks from each group of six ducks each for liver transcriptome analysis. A total of 322 differential genes were identified in the transcriptome analysis results, and 319 genes were significantly down-regulated. Among them, we found that prostaglandin endoperoxide synthase 2 (PTGS2) might be a key hub gene regulating RFI by co-occurrence network analysis. Interestingly, the differential gene PTGS2 was enriched in the arachidonic acid pathway at the same time as the differential metabolite 15-deoxy-delta12,14-prostaglandin J2 (15d-PGJ2). In addition, the results of the association analysis of differential metabolites with microorganisms also revealed a significant negative correlation between 15d-PGJ2 and Elusimicrobiota.</p><p><strong>Conclusion: </strong>Based on comprehensive analysis of the research results, we speculate that the Elusimicrobiota may affect the feed utilization efficiency in ducks by regulating the expression of the PTGS2 gene.</p>\",\"PeriodicalId\":72201,\"journal\":{\"name\":\"Animal microbiome\",\"volume\":\"7 1\",\"pages\":\"30\"},\"PeriodicalIF\":4.9000,\"publicationDate\":\"2025-03-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11929276/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Animal microbiome\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1186/s42523-025-00394-z\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Animal microbiome","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1186/s42523-025-00394-z","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

背景:肠道菌群对鸟类能量代谢稳态和生产性能具有重要影响。鉴于可耕地日益减少,畜牧业生产与人口之间对有限资源的竞争日益激烈,农业部门面临着提高生产效率和减少生态足迹的双重任务。在这种模式下,优化商业水禽养殖的营养吸收效率成为战略重点。本研究采用综合多组学方法框架(宏基因组学、代谢组学和转录组学分析)来阐明山鹧鸪鸭盲肠微生物群与饲料转化率之间的机制关系。结果:基于宏基因组数据分析,通过宏基因组测序分析共鉴定出34门、1033属、3262种细菌。在门水平上,低残采食量组有31个门的平均丰度高于高残采食量组。其中,LRFI组Elusimicrobiota的表达量显著高于HRFI组(P)。结论:综合分析研究结果,我们推测Elusimicrobiota可能通过调节PTGS2基因的表达影响鸭的饲料利用效率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Interaction between cecal microbiota and liver genes of laying ducks with different residual feed intake.

Background: The gut microbiota exerts a critical influence on energy metabolism homeostasis and productive performance in avian species. Given the diminishing availability of arable land and intensifying competition for finite resources between livestock production and human populations, the agricultural sector faces dual imperatives to enhance productive efficiency while mitigating ecological footprints. Within this paradigm, optimizing nutrient assimilation efficiency in commercial waterfowl operations emerges as a strategic priority. This investigation employs an integrated multi-omics approach framework (metagenomic, metabolomic, and transcriptomic analyses) to elucidate the mechanistic relationships between cecal microbial consortia and feed conversion ratios in Shan Partridge ducks.

Results: Based on the analysis of metagenome data, a total of 34 phyla, 1033 genera and 3262 species of bacteria were identified by metagenomic sequencing analysis. At the phylum level, 31 phylums had higher mean abundance in the low residual feed intake ( LRFI) group than in the high residual feed intake (HRFI) group. Among them, the expression of microbiome Elusimicrobiota was significantly higher in the LRFI group than in the HRFI group (P < 0.05). And we also found a significant differences in secondary metabolites biosynthesis, transport, and catabolism pathways between the two groups in microbial function (P < 0.05). Based on metabolomic analysis, 17 different metabolites were found. Among them, Lipids and lipid molecules accounted for the highest proportion. Whereas the liver is very closely related to lipid metabolism, we are close to understanding whether an individual's energy utilization efficiency is related to gene expression in the liver. We selected six ducks from each group of six ducks each for liver transcriptome analysis. A total of 322 differential genes were identified in the transcriptome analysis results, and 319 genes were significantly down-regulated. Among them, we found that prostaglandin endoperoxide synthase 2 (PTGS2) might be a key hub gene regulating RFI by co-occurrence network analysis. Interestingly, the differential gene PTGS2 was enriched in the arachidonic acid pathway at the same time as the differential metabolite 15-deoxy-delta12,14-prostaglandin J2 (15d-PGJ2). In addition, the results of the association analysis of differential metabolites with microorganisms also revealed a significant negative correlation between 15d-PGJ2 and Elusimicrobiota.

Conclusion: Based on comprehensive analysis of the research results, we speculate that the Elusimicrobiota may affect the feed utilization efficiency in ducks by regulating the expression of the PTGS2 gene.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
7.20
自引率
0.00%
发文量
0
审稿时长
13 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信