幽门螺杆菌抗生素耐药性评估:基于全基因组遗传变异的实用且可解释的机器学习模型。

IF 5.5 1区 农林科学 Q1 IMMUNOLOGY
Virulence Pub Date : 2025-12-01 Epub Date: 2025-03-21 DOI:10.1080/21505594.2025.2481503
Yingying Wang, Shuwen Zheng, Rui Guo, Yanke Li, Honghao Yin, Xunan Qiu, Jijun Chen, Chuxuan Ni, Yuan Yuan, Yuehua Gong
{"title":"幽门螺杆菌抗生素耐药性评估:基于全基因组遗传变异的实用且可解释的机器学习模型。","authors":"Yingying Wang, Shuwen Zheng, Rui Guo, Yanke Li, Honghao Yin, Xunan Qiu, Jijun Chen, Chuxuan Ni, Yuan Yuan, Yuehua Gong","doi":"10.1080/21505594.2025.2481503","DOIUrl":null,"url":null,"abstract":"<p><p><i>Helicobacter pylori</i> (<i>H. pylori</i>) antibiotic resistance poses a global health threat. Accurate identification of antibiotic resistant strains is essential for the control of infection. In the present study, our goal is to leverage the whole-genome data of <i>H. pylori</i> to develop practical and interpretable machine learning (ML) models for comprehensive antibiotic resistance assessment. A total of 296 <i>H. pylori</i> isolates with genome-wide data were downloaded from the Bacterial and Viral Bioinformatics Resource Center (BV-BRC) and the National Center for Biotechnology Information (NCBI) databases. By training ML models on feature sets of single nucleotide polymorphisms from SNP calling (SNPs-1), antibiotic-resistance SNP annotated by the Comprehensive Antibiotic Resistance Database (SNPs-2), gene presence or absence (GPA), we generated predictive models for four antibiotics and multidrug-resistance (MDR). Among them, the models that combined SNPs-1, SNPs-2, and GPA data demonstrated the best performance, with the eXtreme Gradient Boosting (XGBoost) consistently outperforming others. And then we utilized the SHapley Additive exPlanations (SHAP) method to interpret the ML models. Furthermore, a free web application for the MDR model was deployed to the GitHub repository (https://H.pylori/MDR/App/). Our study demonstrated the promise of employing whole-genome data in conjunction with ML algorithms to forecast <i>H. pylori</i> antibiotic resistance. In the future, the application of this approach for predicting <i>H. pylori</i> antibiotic resistance would hold the potential to mitigate the empiric administration.</p>","PeriodicalId":23747,"journal":{"name":"Virulence","volume":"16 1","pages":"2481503"},"PeriodicalIF":5.5000,"publicationDate":"2025-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11934168/pdf/","citationCount":"0","resultStr":"{\"title\":\"Assessment for antibiotic resistance in <i>Helicobacter pylori</i>: A practical and interpretable machine learning model based on genome-wide genetic variation.\",\"authors\":\"Yingying Wang, Shuwen Zheng, Rui Guo, Yanke Li, Honghao Yin, Xunan Qiu, Jijun Chen, Chuxuan Ni, Yuan Yuan, Yuehua Gong\",\"doi\":\"10.1080/21505594.2025.2481503\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p><i>Helicobacter pylori</i> (<i>H. pylori</i>) antibiotic resistance poses a global health threat. Accurate identification of antibiotic resistant strains is essential for the control of infection. In the present study, our goal is to leverage the whole-genome data of <i>H. pylori</i> to develop practical and interpretable machine learning (ML) models for comprehensive antibiotic resistance assessment. A total of 296 <i>H. pylori</i> isolates with genome-wide data were downloaded from the Bacterial and Viral Bioinformatics Resource Center (BV-BRC) and the National Center for Biotechnology Information (NCBI) databases. By training ML models on feature sets of single nucleotide polymorphisms from SNP calling (SNPs-1), antibiotic-resistance SNP annotated by the Comprehensive Antibiotic Resistance Database (SNPs-2), gene presence or absence (GPA), we generated predictive models for four antibiotics and multidrug-resistance (MDR). Among them, the models that combined SNPs-1, SNPs-2, and GPA data demonstrated the best performance, with the eXtreme Gradient Boosting (XGBoost) consistently outperforming others. And then we utilized the SHapley Additive exPlanations (SHAP) method to interpret the ML models. Furthermore, a free web application for the MDR model was deployed to the GitHub repository (https://H.pylori/MDR/App/). Our study demonstrated the promise of employing whole-genome data in conjunction with ML algorithms to forecast <i>H. pylori</i> antibiotic resistance. In the future, the application of this approach for predicting <i>H. pylori</i> antibiotic resistance would hold the potential to mitigate the empiric administration.</p>\",\"PeriodicalId\":23747,\"journal\":{\"name\":\"Virulence\",\"volume\":\"16 1\",\"pages\":\"2481503\"},\"PeriodicalIF\":5.5000,\"publicationDate\":\"2025-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11934168/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Virulence\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1080/21505594.2025.2481503\",\"RegionNum\":1,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/3/21 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"IMMUNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Virulence","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1080/21505594.2025.2481503","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/3/21 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"IMMUNOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

幽门螺杆菌(H. pylori)抗生素耐药性对全球健康构成威胁。准确鉴定耐药菌株对控制感染至关重要。在本研究中,我们的目标是利用幽门螺杆菌的全基因组数据来开发实用且可解释的机器学习(ML)模型,用于全面的抗生素耐药性评估。从细菌和病毒生物信息学资源中心(BV-BRC)和国家生物技术信息中心(NCBI)数据库中下载296株幽门螺杆菌全基因组数据。通过对来自SNP呼叫(SNP -1)、综合抗生素耐药数据库(SNP -2)注释的抗生素耐药SNP、基因存在或缺失(GPA)的单核苷酸多态性特征集进行ML模型训练,我们生成了四种抗生素和多药耐药(MDR)的预测模型。其中,结合snp -1、snp -2和GPA数据的模型表现出最好的性能,其中eXtreme Gradient Boosting (XGBoost)的表现始终优于其他模型。然后利用SHapley加性解释(SHAP)方法对ML模型进行解释。此外,MDR模型的免费web应用程序被部署到GitHub存储库(https://H.pylori/MDR/App/)。我们的研究表明,利用全基因组数据结合ML算法预测幽门螺杆菌抗生素耐药性是有希望的。在未来,应用这种方法来预测幽门螺杆菌抗生素耐药性将有可能减轻经验管理。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Assessment for antibiotic resistance in Helicobacter pylori: A practical and interpretable machine learning model based on genome-wide genetic variation.

Helicobacter pylori (H. pylori) antibiotic resistance poses a global health threat. Accurate identification of antibiotic resistant strains is essential for the control of infection. In the present study, our goal is to leverage the whole-genome data of H. pylori to develop practical and interpretable machine learning (ML) models for comprehensive antibiotic resistance assessment. A total of 296 H. pylori isolates with genome-wide data were downloaded from the Bacterial and Viral Bioinformatics Resource Center (BV-BRC) and the National Center for Biotechnology Information (NCBI) databases. By training ML models on feature sets of single nucleotide polymorphisms from SNP calling (SNPs-1), antibiotic-resistance SNP annotated by the Comprehensive Antibiotic Resistance Database (SNPs-2), gene presence or absence (GPA), we generated predictive models for four antibiotics and multidrug-resistance (MDR). Among them, the models that combined SNPs-1, SNPs-2, and GPA data demonstrated the best performance, with the eXtreme Gradient Boosting (XGBoost) consistently outperforming others. And then we utilized the SHapley Additive exPlanations (SHAP) method to interpret the ML models. Furthermore, a free web application for the MDR model was deployed to the GitHub repository (https://H.pylori/MDR/App/). Our study demonstrated the promise of employing whole-genome data in conjunction with ML algorithms to forecast H. pylori antibiotic resistance. In the future, the application of this approach for predicting H. pylori antibiotic resistance would hold the potential to mitigate the empiric administration.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Virulence
Virulence IMMUNOLOGY-MICROBIOLOGY
CiteScore
9.20
自引率
1.90%
发文量
123
审稿时长
6-12 weeks
期刊介绍: Virulence is a fully open access peer-reviewed journal. All articles will (if accepted) be available for anyone to read anywhere, at any time immediately on publication. Virulence is the first international peer-reviewed journal of its kind to focus exclusively on microbial pathogenicity, the infection process and host-pathogen interactions. To address the new infectious challenges, emerging infectious agents and antimicrobial resistance, there is a clear need for interdisciplinary research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信