小型评论:空间转录组学解码中枢神经系统

IF 1.4 4区 医学 Q3 PATHOLOGY
Benedek Pesti, Xavi Langa, Nadine Kumpesa, Alberto Valdeolivas, Marc Sultan, Sven Rottenberg, Kerstin Hahn
{"title":"小型评论:空间转录组学解码中枢神经系统","authors":"Benedek Pesti, Xavi Langa, Nadine Kumpesa, Alberto Valdeolivas, Marc Sultan, Sven Rottenberg, Kerstin Hahn","doi":"10.1177/01926233251325204","DOIUrl":null,"url":null,"abstract":"<p><p>Spatial transcriptomics (ST) is revolutionizing our understanding of the central nervous system (CNS) by providing spatially resolved gene expression data. This mini review explores the impact of ST on CNS research, particularly in neurodegenerative diseases like Alzheimer's, Parkinson's, multiple sclerosis, and amyotrophic lateral sclerosis. We describe two foundational ST methods: sequencing-based and imaging-based. Key studies are reviewed highlighting the power of ST data sets to map transcriptomes to disease-specific histomorphology, elucidate molecular mechanisms of regional and cellular vulnerability, integrate single-cell data with tissue mapping, and reveal receptor-ligand interactions. Despite current challenges like data interpretation and resolution limits, ST holds promise for identifying novel drug targets, evaluating their therapeutic potential, and bridging gaps between animal models and human studies to advance development of CNS-targeting compounds.</p>","PeriodicalId":23113,"journal":{"name":"Toxicologic Pathology","volume":" ","pages":"1926233251325204"},"PeriodicalIF":1.4000,"publicationDate":"2025-03-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Mini Review: Spatial Transcriptomics to Decode the Central Nervous System.\",\"authors\":\"Benedek Pesti, Xavi Langa, Nadine Kumpesa, Alberto Valdeolivas, Marc Sultan, Sven Rottenberg, Kerstin Hahn\",\"doi\":\"10.1177/01926233251325204\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Spatial transcriptomics (ST) is revolutionizing our understanding of the central nervous system (CNS) by providing spatially resolved gene expression data. This mini review explores the impact of ST on CNS research, particularly in neurodegenerative diseases like Alzheimer's, Parkinson's, multiple sclerosis, and amyotrophic lateral sclerosis. We describe two foundational ST methods: sequencing-based and imaging-based. Key studies are reviewed highlighting the power of ST data sets to map transcriptomes to disease-specific histomorphology, elucidate molecular mechanisms of regional and cellular vulnerability, integrate single-cell data with tissue mapping, and reveal receptor-ligand interactions. Despite current challenges like data interpretation and resolution limits, ST holds promise for identifying novel drug targets, evaluating their therapeutic potential, and bridging gaps between animal models and human studies to advance development of CNS-targeting compounds.</p>\",\"PeriodicalId\":23113,\"journal\":{\"name\":\"Toxicologic Pathology\",\"volume\":\" \",\"pages\":\"1926233251325204\"},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2025-03-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Toxicologic Pathology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1177/01926233251325204\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"PATHOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Toxicologic Pathology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1177/01926233251325204","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PATHOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

本文章由计算机程序翻译,如有差异,请以英文原文为准。
Mini Review: Spatial Transcriptomics to Decode the Central Nervous System.

Spatial transcriptomics (ST) is revolutionizing our understanding of the central nervous system (CNS) by providing spatially resolved gene expression data. This mini review explores the impact of ST on CNS research, particularly in neurodegenerative diseases like Alzheimer's, Parkinson's, multiple sclerosis, and amyotrophic lateral sclerosis. We describe two foundational ST methods: sequencing-based and imaging-based. Key studies are reviewed highlighting the power of ST data sets to map transcriptomes to disease-specific histomorphology, elucidate molecular mechanisms of regional and cellular vulnerability, integrate single-cell data with tissue mapping, and reveal receptor-ligand interactions. Despite current challenges like data interpretation and resolution limits, ST holds promise for identifying novel drug targets, evaluating their therapeutic potential, and bridging gaps between animal models and human studies to advance development of CNS-targeting compounds.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Toxicologic Pathology
Toxicologic Pathology 医学-病理学
CiteScore
4.70
自引率
20.00%
发文量
57
审稿时长
6-12 weeks
期刊介绍: Toxicologic Pathology is dedicated to the promotion of human, animal, and environmental health through the dissemination of knowledge, techniques, and guidelines to enhance the understanding and practice of toxicologic pathology. Toxicologic Pathology, the official journal of the Society of Toxicologic Pathology, will publish Original Research Articles, Symposium Articles, Review Articles, Meeting Reports, New Techniques, and Position Papers that are relevant to toxicologic pathology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信