{"title":"基于增强型DeepLabv3的重庆市不透水地表提取与时空分析。","authors":"Dengfeng Wei, Yue Chang, Honghai Kuang","doi":"10.1038/s41598-025-94882-6","DOIUrl":null,"url":null,"abstract":"<p><p>In this study, Sentinel-2 time series satellite remote sensing imagery and an improved CA-DeepLabV3+ semantic segmentation network were utilized to construct a model for extracting urban impervious surfaces. The model was used to extract the distribution information of impervious surfaces in the central urban area in Chongqing from 2017 to 2022. The spatiotemporal evolution characteristics of the impervious surfaces were analyzed using the area change and standard deviational ellipse methods. The results indicate that the improved CA-DeepLabV3+ model performs exceptionally well in identifying impervious surfaces, with precision, recall, F1 score, and MIoU values of 90.78%, 90.85%, 90.82%, and 83.25%, respectively, which are significantly better than those of other classic semantic segmentation models, demonstrating its high reliability and generalization performance. The analysis shows that the impervious surface area in Chongqing's central urban area has grown rapidly over the past five years, with a clear expansion trend, especially in the core urban area and its surrounding areas. The standard deviational ellipse analysis revealed that significant directional expansion of the impervious surfaces has occurred, primarily along the north-south axis. Overall, this model can achieve large-scale, time-series monitoring of the impervious surface distribution, providing critical technical support for studying urban impervious surface expansion and fine urban management, presenting promising application prospects.</p>","PeriodicalId":21811,"journal":{"name":"Scientific Reports","volume":"15 1","pages":"9807"},"PeriodicalIF":3.9000,"publicationDate":"2025-03-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11928587/pdf/","citationCount":"0","resultStr":"{\"title\":\"Extraction and spatiotemporal analysis of impervious surfaces in Chongqing based on enhanced DeepLabv3.\",\"authors\":\"Dengfeng Wei, Yue Chang, Honghai Kuang\",\"doi\":\"10.1038/s41598-025-94882-6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>In this study, Sentinel-2 time series satellite remote sensing imagery and an improved CA-DeepLabV3+ semantic segmentation network were utilized to construct a model for extracting urban impervious surfaces. The model was used to extract the distribution information of impervious surfaces in the central urban area in Chongqing from 2017 to 2022. The spatiotemporal evolution characteristics of the impervious surfaces were analyzed using the area change and standard deviational ellipse methods. The results indicate that the improved CA-DeepLabV3+ model performs exceptionally well in identifying impervious surfaces, with precision, recall, F1 score, and MIoU values of 90.78%, 90.85%, 90.82%, and 83.25%, respectively, which are significantly better than those of other classic semantic segmentation models, demonstrating its high reliability and generalization performance. The analysis shows that the impervious surface area in Chongqing's central urban area has grown rapidly over the past five years, with a clear expansion trend, especially in the core urban area and its surrounding areas. The standard deviational ellipse analysis revealed that significant directional expansion of the impervious surfaces has occurred, primarily along the north-south axis. Overall, this model can achieve large-scale, time-series monitoring of the impervious surface distribution, providing critical technical support for studying urban impervious surface expansion and fine urban management, presenting promising application prospects.</p>\",\"PeriodicalId\":21811,\"journal\":{\"name\":\"Scientific Reports\",\"volume\":\"15 1\",\"pages\":\"9807\"},\"PeriodicalIF\":3.9000,\"publicationDate\":\"2025-03-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11928587/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Scientific Reports\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://doi.org/10.1038/s41598-025-94882-6\",\"RegionNum\":2,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Scientific Reports","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41598-025-94882-6","RegionNum":2,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
Extraction and spatiotemporal analysis of impervious surfaces in Chongqing based on enhanced DeepLabv3.
In this study, Sentinel-2 time series satellite remote sensing imagery and an improved CA-DeepLabV3+ semantic segmentation network were utilized to construct a model for extracting urban impervious surfaces. The model was used to extract the distribution information of impervious surfaces in the central urban area in Chongqing from 2017 to 2022. The spatiotemporal evolution characteristics of the impervious surfaces were analyzed using the area change and standard deviational ellipse methods. The results indicate that the improved CA-DeepLabV3+ model performs exceptionally well in identifying impervious surfaces, with precision, recall, F1 score, and MIoU values of 90.78%, 90.85%, 90.82%, and 83.25%, respectively, which are significantly better than those of other classic semantic segmentation models, demonstrating its high reliability and generalization performance. The analysis shows that the impervious surface area in Chongqing's central urban area has grown rapidly over the past five years, with a clear expansion trend, especially in the core urban area and its surrounding areas. The standard deviational ellipse analysis revealed that significant directional expansion of the impervious surfaces has occurred, primarily along the north-south axis. Overall, this model can achieve large-scale, time-series monitoring of the impervious surface distribution, providing critical technical support for studying urban impervious surface expansion and fine urban management, presenting promising application prospects.
期刊介绍:
We publish original research from all areas of the natural sciences, psychology, medicine and engineering. You can learn more about what we publish by browsing our specific scientific subject areas below or explore Scientific Reports by browsing all articles and collections.
Scientific Reports has a 2-year impact factor: 4.380 (2021), and is the 6th most-cited journal in the world, with more than 540,000 citations in 2020 (Clarivate Analytics, 2021).
•Engineering
Engineering covers all aspects of engineering, technology, and applied science. It plays a crucial role in the development of technologies to address some of the world''s biggest challenges, helping to save lives and improve the way we live.
•Physical sciences
Physical sciences are those academic disciplines that aim to uncover the underlying laws of nature — often written in the language of mathematics. It is a collective term for areas of study including astronomy, chemistry, materials science and physics.
•Earth and environmental sciences
Earth and environmental sciences cover all aspects of Earth and planetary science and broadly encompass solid Earth processes, surface and atmospheric dynamics, Earth system history, climate and climate change, marine and freshwater systems, and ecology. It also considers the interactions between humans and these systems.
•Biological sciences
Biological sciences encompass all the divisions of natural sciences examining various aspects of vital processes. The concept includes anatomy, physiology, cell biology, biochemistry and biophysics, and covers all organisms from microorganisms, animals to plants.
•Health sciences
The health sciences study health, disease and healthcare. This field of study aims to develop knowledge, interventions and technology for use in healthcare to improve the treatment of patients.