{"title":"来自CRISPR-sgRNA表达质粒的虚假转录rna支撑生物分子凝聚形成并阻碍准确的基因组成像。","authors":"Shiqi Mao, Ruonan Wu, Weibang Luo, Jinshan Qin, Antony K Chen","doi":"10.1093/nar/gkaf192","DOIUrl":null,"url":null,"abstract":"<p><p>Clustered regularly interspaced short palindromic repeats (CRISPR)-based imaging tools that utilize fluorescently tagged single-guide RNAs (sgRNAs) have enabled versatile analysis of the dynamics of single genomic loci, but the accuracy may be hindered by nonspecific subnuclear probe accumulation, generating false-positive foci in cell nuclei. By examining the subcellular localizations of sgRNA expression plasmids, their RNA transcripts, and several RNA-binding proteins, we found that spuriously transcribed (cryptic) transcripts, produced by sgRNA expression plasmids, are the major contributors of false-positive signals, independent of sgRNA scaffold design or effector probe (i.e. RNA aptamer- or oligonucleotide-based probes) used. These transcripts interact with the paraspeckle core proteins, but not with the sgRNA expression plasmids or the paraspeckle RNA scaffold NEAT1_2, to form nuclear bodies that display liquid-like properties including sphericality, fusion competence, and sensitivity to 1,6-hexanediol. Transfecting sgRNA transcription units (i.e. sgRNA expression cassettes), lacking the plasmid backbones, reduces false-positive signals and enhances genomic imaging accuracy. Overall, this study unveils previously undescribed activities of cryptic plasmid transcripts and presents an easy-to-adapt strategy that can potentially improve the precision of CRISPR-based imaging systems that implement fluorescently tagged sgRNAs.</p>","PeriodicalId":19471,"journal":{"name":"Nucleic Acids Research","volume":"53 6","pages":""},"PeriodicalIF":16.6000,"publicationDate":"2025-03-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11928936/pdf/","citationCount":"0","resultStr":"{\"title\":\"Spuriously transcribed RNAs from CRISPR-sgRNA expression plasmids scaffold biomolecular condensate formation and hamper accurate genomic imaging.\",\"authors\":\"Shiqi Mao, Ruonan Wu, Weibang Luo, Jinshan Qin, Antony K Chen\",\"doi\":\"10.1093/nar/gkaf192\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Clustered regularly interspaced short palindromic repeats (CRISPR)-based imaging tools that utilize fluorescently tagged single-guide RNAs (sgRNAs) have enabled versatile analysis of the dynamics of single genomic loci, but the accuracy may be hindered by nonspecific subnuclear probe accumulation, generating false-positive foci in cell nuclei. By examining the subcellular localizations of sgRNA expression plasmids, their RNA transcripts, and several RNA-binding proteins, we found that spuriously transcribed (cryptic) transcripts, produced by sgRNA expression plasmids, are the major contributors of false-positive signals, independent of sgRNA scaffold design or effector probe (i.e. RNA aptamer- or oligonucleotide-based probes) used. These transcripts interact with the paraspeckle core proteins, but not with the sgRNA expression plasmids or the paraspeckle RNA scaffold NEAT1_2, to form nuclear bodies that display liquid-like properties including sphericality, fusion competence, and sensitivity to 1,6-hexanediol. Transfecting sgRNA transcription units (i.e. sgRNA expression cassettes), lacking the plasmid backbones, reduces false-positive signals and enhances genomic imaging accuracy. Overall, this study unveils previously undescribed activities of cryptic plasmid transcripts and presents an easy-to-adapt strategy that can potentially improve the precision of CRISPR-based imaging systems that implement fluorescently tagged sgRNAs.</p>\",\"PeriodicalId\":19471,\"journal\":{\"name\":\"Nucleic Acids Research\",\"volume\":\"53 6\",\"pages\":\"\"},\"PeriodicalIF\":16.6000,\"publicationDate\":\"2025-03-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11928936/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nucleic Acids Research\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1093/nar/gkaf192\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nucleic Acids Research","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/nar/gkaf192","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
Spuriously transcribed RNAs from CRISPR-sgRNA expression plasmids scaffold biomolecular condensate formation and hamper accurate genomic imaging.
Clustered regularly interspaced short palindromic repeats (CRISPR)-based imaging tools that utilize fluorescently tagged single-guide RNAs (sgRNAs) have enabled versatile analysis of the dynamics of single genomic loci, but the accuracy may be hindered by nonspecific subnuclear probe accumulation, generating false-positive foci in cell nuclei. By examining the subcellular localizations of sgRNA expression plasmids, their RNA transcripts, and several RNA-binding proteins, we found that spuriously transcribed (cryptic) transcripts, produced by sgRNA expression plasmids, are the major contributors of false-positive signals, independent of sgRNA scaffold design or effector probe (i.e. RNA aptamer- or oligonucleotide-based probes) used. These transcripts interact with the paraspeckle core proteins, but not with the sgRNA expression plasmids or the paraspeckle RNA scaffold NEAT1_2, to form nuclear bodies that display liquid-like properties including sphericality, fusion competence, and sensitivity to 1,6-hexanediol. Transfecting sgRNA transcription units (i.e. sgRNA expression cassettes), lacking the plasmid backbones, reduces false-positive signals and enhances genomic imaging accuracy. Overall, this study unveils previously undescribed activities of cryptic plasmid transcripts and presents an easy-to-adapt strategy that can potentially improve the precision of CRISPR-based imaging systems that implement fluorescently tagged sgRNAs.
期刊介绍:
Nucleic Acids Research (NAR) is a scientific journal that publishes research on various aspects of nucleic acids and proteins involved in nucleic acid metabolism and interactions. It covers areas such as chemistry and synthetic biology, computational biology, gene regulation, chromatin and epigenetics, genome integrity, repair and replication, genomics, molecular biology, nucleic acid enzymes, RNA, and structural biology. The journal also includes a Survey and Summary section for brief reviews. Additionally, each year, the first issue is dedicated to biological databases, and an issue in July focuses on web-based software resources for the biological community. Nucleic Acids Research is indexed by several services including Abstracts on Hygiene and Communicable Diseases, Animal Breeding Abstracts, Agricultural Engineering Abstracts, Agbiotech News and Information, BIOSIS Previews, CAB Abstracts, and EMBASE.