连续拉伸和激活方案中平滑肌力学特性的再现性。

IF 2.9 4区 医学 Q2 PHYSIOLOGY
Simon Kiem, Stefan Papenkort, Mischa Borsdorf, Markus Böl, Tobias Siebert
{"title":"连续拉伸和激活方案中平滑肌力学特性的再现性。","authors":"Simon Kiem, Stefan Papenkort, Mischa Borsdorf, Markus Böl, Tobias Siebert","doi":"10.1007/s00424-025-03075-7","DOIUrl":null,"url":null,"abstract":"<p><p>Mechanical organ models are crucial for understanding organ function and clinical applications. These models rely on input data regarding smooth muscle properties, typically gathered from experiments involving stimulations at different muscle lengths. However, reproducibility of these experimental results is a major challenge due to rapid changes in active and passive smooth muscle properties during the measurement period. Usually, preconditioning of the tissue is employed to ensure reproducible behavior in subsequent experiments, but this process itself alters the tissue's mechanical properties. To address this issue, three protocols (P1, P2, P3) without preconditioning were developed and compared to preserve the initial mechanical properties of smooth muscle tissue. Each protocol included five repetitive experimental cycles with stimulations at a long muscle length, varying in the number of stimulations at a short muscle length (P1: 0, P2: 1, P3: 2 stimulations). Results showed that P2 and P3 successfully reproduced the initial active force at a long length over five cycles, but failed to maintain the initial passive forces. Conversely, P1 was most effective in maintaining constant passive forces over the cycles. These findings are supported by existing adaptation models. Active force changes are primarily due to the addition or removal of contractile units in the contractile apparatus, while passive force changes mainly result from actin polymerization induced by contractions, leading to cytoskeletal stiffening. This study introduces a new method for obtaining reproducible smooth muscle parameters, offering a foundation for future research to replicate the mechanical properties of smooth muscle tissue without preconditioning.</p>","PeriodicalId":19954,"journal":{"name":"Pflugers Archiv : European journal of physiology","volume":" ","pages":""},"PeriodicalIF":2.9000,"publicationDate":"2025-03-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Reproducibility of smooth muscle mechanical properties in consecutive stretch and activation protocols.\",\"authors\":\"Simon Kiem, Stefan Papenkort, Mischa Borsdorf, Markus Böl, Tobias Siebert\",\"doi\":\"10.1007/s00424-025-03075-7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Mechanical organ models are crucial for understanding organ function and clinical applications. These models rely on input data regarding smooth muscle properties, typically gathered from experiments involving stimulations at different muscle lengths. However, reproducibility of these experimental results is a major challenge due to rapid changes in active and passive smooth muscle properties during the measurement period. Usually, preconditioning of the tissue is employed to ensure reproducible behavior in subsequent experiments, but this process itself alters the tissue's mechanical properties. To address this issue, three protocols (P1, P2, P3) without preconditioning were developed and compared to preserve the initial mechanical properties of smooth muscle tissue. Each protocol included five repetitive experimental cycles with stimulations at a long muscle length, varying in the number of stimulations at a short muscle length (P1: 0, P2: 1, P3: 2 stimulations). Results showed that P2 and P3 successfully reproduced the initial active force at a long length over five cycles, but failed to maintain the initial passive forces. Conversely, P1 was most effective in maintaining constant passive forces over the cycles. These findings are supported by existing adaptation models. Active force changes are primarily due to the addition or removal of contractile units in the contractile apparatus, while passive force changes mainly result from actin polymerization induced by contractions, leading to cytoskeletal stiffening. This study introduces a new method for obtaining reproducible smooth muscle parameters, offering a foundation for future research to replicate the mechanical properties of smooth muscle tissue without preconditioning.</p>\",\"PeriodicalId\":19954,\"journal\":{\"name\":\"Pflugers Archiv : European journal of physiology\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2025-03-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Pflugers Archiv : European journal of physiology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1007/s00424-025-03075-7\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"PHYSIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Pflugers Archiv : European journal of physiology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s00424-025-03075-7","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

机械器官模型对于了解器官功能和临床应用至关重要。这些模型依赖于关于平滑肌特性的输入数据,这些数据通常是从涉及不同肌肉长度刺激的实验中收集的。然而,由于在测量期间主动和被动平滑肌特性的快速变化,这些实验结果的可重复性是一个主要挑战。通常,对组织进行预处理是为了确保在随后的实验中再现其行为,但这一过程本身会改变组织的机械性能。为了解决这一问题,研究人员开发了三种未经预处理的方案(P1、P2、P3),并对其进行了比较,以保持平滑肌组织的初始力学性能。每个方案包括5个重复的实验周期,在长肌肉长度的刺激下,在短肌肉长度的刺激次数不同(P1: 0, P2: 1, P3: 2刺激)。结果表明,P2和P3在5个周期内成功地长时间复制了初始的主动力,但未能保持初始的被动力。相反,P1在整个循环中保持恒定的被动力是最有效的。这些发现得到了现有适应模型的支持。主动力的变化主要是由于收缩器中收缩单元的增加或减少,而被动力的变化主要是由于收缩引起的肌动蛋白聚合,导致细胞骨架变硬。本研究介绍了一种获得可重复性平滑肌参数的新方法,为今后不经预处理复制平滑肌组织力学性能的研究奠定了基础。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Reproducibility of smooth muscle mechanical properties in consecutive stretch and activation protocols.

Mechanical organ models are crucial for understanding organ function and clinical applications. These models rely on input data regarding smooth muscle properties, typically gathered from experiments involving stimulations at different muscle lengths. However, reproducibility of these experimental results is a major challenge due to rapid changes in active and passive smooth muscle properties during the measurement period. Usually, preconditioning of the tissue is employed to ensure reproducible behavior in subsequent experiments, but this process itself alters the tissue's mechanical properties. To address this issue, three protocols (P1, P2, P3) without preconditioning were developed and compared to preserve the initial mechanical properties of smooth muscle tissue. Each protocol included five repetitive experimental cycles with stimulations at a long muscle length, varying in the number of stimulations at a short muscle length (P1: 0, P2: 1, P3: 2 stimulations). Results showed that P2 and P3 successfully reproduced the initial active force at a long length over five cycles, but failed to maintain the initial passive forces. Conversely, P1 was most effective in maintaining constant passive forces over the cycles. These findings are supported by existing adaptation models. Active force changes are primarily due to the addition or removal of contractile units in the contractile apparatus, while passive force changes mainly result from actin polymerization induced by contractions, leading to cytoskeletal stiffening. This study introduces a new method for obtaining reproducible smooth muscle parameters, offering a foundation for future research to replicate the mechanical properties of smooth muscle tissue without preconditioning.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
8.80
自引率
2.20%
发文量
121
审稿时长
4-8 weeks
期刊介绍: Pflügers Archiv European Journal of Physiology publishes those results of original research that are seen as advancing the physiological sciences, especially those providing mechanistic insights into physiological functions at the molecular and cellular level, and clearly conveying a physiological message. Submissions are encouraged that deal with the evaluation of molecular and cellular mechanisms of disease, ideally resulting in translational research. Purely descriptive papers covering applied physiology or clinical papers will be excluded. Papers on methodological topics will be considered if they contribute to the development of novel tools for further investigation of (patho)physiological mechanisms.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信