Dario Vassetti, Giorgia Cenedese, Jonathan Honorien, Zeynep Serinyel, Philippe Dagaut, Lydia Boualem, Bruno Moreau, Sandro Gail, Fabrice Foucher, Guillaume Dayma, Andre Nicolle
{"title":"Fenchone低温自燃中开环与过氧化的竞争。","authors":"Dario Vassetti, Giorgia Cenedese, Jonathan Honorien, Zeynep Serinyel, Philippe Dagaut, Lydia Boualem, Bruno Moreau, Sandro Gail, Fabrice Foucher, Guillaume Dayma, Andre Nicolle","doi":"10.1021/acs.jpca.4c08396","DOIUrl":null,"url":null,"abstract":"<p><p>We report an atypical competition between fenchyl radical β-scission and peroxidation at low temperatures and unravel the impacts of strain energy and ring substituent location on their respective contributions. Our RRKM modeling reveals that radicals positioned on secondary carbons are the fastest-scission ones, exhibiting maximum local ring relief. Dimethyl substituents contribute to increased local strain compared to norbornane, hindering bridge scission and leading to cyclopentene and isoprene products. The dimethyl corset generates extra torsional strain during HO<sub>2</sub> elimination from QOOH, while ether formation is favored by electron donation from the carbonyl group. The falloff extent is also affected by steric hindrance, insofar as it increases bridge stiffness, leading to a lower vibrational partition function and low-pressure rate constant. Furthermore, methyl-induced restrictions on reactant reorganization are found to modulate an enthalpy-entropy compensation in the Korcek reaction of fenchyl hydroperoxide. Unlike in our previous stirred reactor experiments, the impact of fenchyl peroxidation on reactivity is notable under our new rapid compression machine (RCM) experiments. The present model predicts contrasted fenchyl selectivities with radical position, β-scission and peroxidation prevailing respectively for F<sub>1</sub>/F<sub>2</sub>/F<sub>3</sub>/F<sub>4</sub> and F<sub>5</sub>/F<sub>6</sub> radicals. The kinetic mechanism accurately predicts the experimental IDT but indicates a slight first-stage pressure inflection point at the lower experimental temperature, which could not be confirmed experimentally. This new insight into fenchone ring-opening and -closing mechanisms under high-pressure oxidation can be useful for other polycyclic ketones.</p>","PeriodicalId":59,"journal":{"name":"The Journal of Physical Chemistry A","volume":" ","pages":"3113-3131"},"PeriodicalIF":2.7000,"publicationDate":"2025-04-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Ring-Opening Competes with Peroxidation in Fenchone Low-Temperature Autoignition.\",\"authors\":\"Dario Vassetti, Giorgia Cenedese, Jonathan Honorien, Zeynep Serinyel, Philippe Dagaut, Lydia Boualem, Bruno Moreau, Sandro Gail, Fabrice Foucher, Guillaume Dayma, Andre Nicolle\",\"doi\":\"10.1021/acs.jpca.4c08396\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>We report an atypical competition between fenchyl radical β-scission and peroxidation at low temperatures and unravel the impacts of strain energy and ring substituent location on their respective contributions. Our RRKM modeling reveals that radicals positioned on secondary carbons are the fastest-scission ones, exhibiting maximum local ring relief. Dimethyl substituents contribute to increased local strain compared to norbornane, hindering bridge scission and leading to cyclopentene and isoprene products. The dimethyl corset generates extra torsional strain during HO<sub>2</sub> elimination from QOOH, while ether formation is favored by electron donation from the carbonyl group. The falloff extent is also affected by steric hindrance, insofar as it increases bridge stiffness, leading to a lower vibrational partition function and low-pressure rate constant. Furthermore, methyl-induced restrictions on reactant reorganization are found to modulate an enthalpy-entropy compensation in the Korcek reaction of fenchyl hydroperoxide. Unlike in our previous stirred reactor experiments, the impact of fenchyl peroxidation on reactivity is notable under our new rapid compression machine (RCM) experiments. The present model predicts contrasted fenchyl selectivities with radical position, β-scission and peroxidation prevailing respectively for F<sub>1</sub>/F<sub>2</sub>/F<sub>3</sub>/F<sub>4</sub> and F<sub>5</sub>/F<sub>6</sub> radicals. The kinetic mechanism accurately predicts the experimental IDT but indicates a slight first-stage pressure inflection point at the lower experimental temperature, which could not be confirmed experimentally. This new insight into fenchone ring-opening and -closing mechanisms under high-pressure oxidation can be useful for other polycyclic ketones.</p>\",\"PeriodicalId\":59,\"journal\":{\"name\":\"The Journal of Physical Chemistry A\",\"volume\":\" \",\"pages\":\"3113-3131\"},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2025-04-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The Journal of Physical Chemistry A\",\"FirstCategoryId\":\"1\",\"ListUrlMain\":\"https://doi.org/10.1021/acs.jpca.4c08396\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/3/22 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q3\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Journal of Physical Chemistry A","FirstCategoryId":"1","ListUrlMain":"https://doi.org/10.1021/acs.jpca.4c08396","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/3/22 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
Ring-Opening Competes with Peroxidation in Fenchone Low-Temperature Autoignition.
We report an atypical competition between fenchyl radical β-scission and peroxidation at low temperatures and unravel the impacts of strain energy and ring substituent location on their respective contributions. Our RRKM modeling reveals that radicals positioned on secondary carbons are the fastest-scission ones, exhibiting maximum local ring relief. Dimethyl substituents contribute to increased local strain compared to norbornane, hindering bridge scission and leading to cyclopentene and isoprene products. The dimethyl corset generates extra torsional strain during HO2 elimination from QOOH, while ether formation is favored by electron donation from the carbonyl group. The falloff extent is also affected by steric hindrance, insofar as it increases bridge stiffness, leading to a lower vibrational partition function and low-pressure rate constant. Furthermore, methyl-induced restrictions on reactant reorganization are found to modulate an enthalpy-entropy compensation in the Korcek reaction of fenchyl hydroperoxide. Unlike in our previous stirred reactor experiments, the impact of fenchyl peroxidation on reactivity is notable under our new rapid compression machine (RCM) experiments. The present model predicts contrasted fenchyl selectivities with radical position, β-scission and peroxidation prevailing respectively for F1/F2/F3/F4 and F5/F6 radicals. The kinetic mechanism accurately predicts the experimental IDT but indicates a slight first-stage pressure inflection point at the lower experimental temperature, which could not be confirmed experimentally. This new insight into fenchone ring-opening and -closing mechanisms under high-pressure oxidation can be useful for other polycyclic ketones.
期刊介绍:
The Journal of Physical Chemistry A is devoted to reporting new and original experimental and theoretical basic research of interest to physical chemists, biophysical chemists, and chemical physicists.