{"title":"甘露醇预处理诱导面包小麦小孢子胚胎发生与破坏内源激素平衡和生长素大量积累有关。","authors":"Agnieszka Springer, Monika Krzewska, Ewa Dubas, Przemysław Kopeć, Lenka Plačková, Karel Doležal, Dorota Weigt, Iwona Żur","doi":"10.1186/s12870-025-06389-x","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Hormonal homeostasis plays a critical role in the regulation of microspore embryogenesis (ME). The balance between endogenous phytohormones must be altered to induce microspore reprogramming from the classical pollen-formation pathway to embryogenic development, but too extensive changes may be detrimental. In the present study, the levels of auxins, cytokinins and abscisic acid were monitored in the anthers of two Polish winter wheat F1 lines and the spring cultivar Pavon highly differentiated in terms of ME effectiveness. Analyses were carried out at subsequent steps of the ME induction procedure that combined low temperature, sodium selenate and mannitol tiller pre-treatment.</p><p><strong>Results: </strong>Of all the factors tested, mannitol induced the most profound effect on phytohormones and their homeostasis in wheat anthers. It significantly increased the accumulation of all auxins and decreased the levels of most cytokinins, while the change in ABA content was limited to cv. Pavon. In an attempt to alleviate this hormonal shock, we tested several modifications of the induction medium hormonal composition and found thidiazuron to be the most promising in stimulating the embryogenic development of wheat microspores.</p><p><strong>Conclusions: </strong>The lack of ABA-driven stress defence responses may be one of the reasons for the low effectiveness of ME induction in winter wheat microspore cultures. Low cytokinin level and a disturbed auxin/cytokinin balance may then be responsible for the morphological abnormalities observed during the next phases of embryogenic microspore development. One possible solution is to modify the hormonal composition of the induction medium with thidiazuron identified as the most promising component.</p>","PeriodicalId":9198,"journal":{"name":"BMC Plant Biology","volume":"25 1","pages":"370"},"PeriodicalIF":4.3000,"publicationDate":"2025-03-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11929367/pdf/","citationCount":"0","resultStr":"{\"title\":\"Induction of microspore embryogenesis in bread wheat by mannitol pre-treatment is associated with the disruption of endogenous hormone balance and substantial accumulation of auxins.\",\"authors\":\"Agnieszka Springer, Monika Krzewska, Ewa Dubas, Przemysław Kopeć, Lenka Plačková, Karel Doležal, Dorota Weigt, Iwona Żur\",\"doi\":\"10.1186/s12870-025-06389-x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>Hormonal homeostasis plays a critical role in the regulation of microspore embryogenesis (ME). The balance between endogenous phytohormones must be altered to induce microspore reprogramming from the classical pollen-formation pathway to embryogenic development, but too extensive changes may be detrimental. In the present study, the levels of auxins, cytokinins and abscisic acid were monitored in the anthers of two Polish winter wheat F1 lines and the spring cultivar Pavon highly differentiated in terms of ME effectiveness. Analyses were carried out at subsequent steps of the ME induction procedure that combined low temperature, sodium selenate and mannitol tiller pre-treatment.</p><p><strong>Results: </strong>Of all the factors tested, mannitol induced the most profound effect on phytohormones and their homeostasis in wheat anthers. It significantly increased the accumulation of all auxins and decreased the levels of most cytokinins, while the change in ABA content was limited to cv. Pavon. In an attempt to alleviate this hormonal shock, we tested several modifications of the induction medium hormonal composition and found thidiazuron to be the most promising in stimulating the embryogenic development of wheat microspores.</p><p><strong>Conclusions: </strong>The lack of ABA-driven stress defence responses may be one of the reasons for the low effectiveness of ME induction in winter wheat microspore cultures. Low cytokinin level and a disturbed auxin/cytokinin balance may then be responsible for the morphological abnormalities observed during the next phases of embryogenic microspore development. One possible solution is to modify the hormonal composition of the induction medium with thidiazuron identified as the most promising component.</p>\",\"PeriodicalId\":9198,\"journal\":{\"name\":\"BMC Plant Biology\",\"volume\":\"25 1\",\"pages\":\"370\"},\"PeriodicalIF\":4.3000,\"publicationDate\":\"2025-03-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11929367/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"BMC Plant Biology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1186/s12870-025-06389-x\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PLANT SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"BMC Plant Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1186/s12870-025-06389-x","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
Induction of microspore embryogenesis in bread wheat by mannitol pre-treatment is associated with the disruption of endogenous hormone balance and substantial accumulation of auxins.
Background: Hormonal homeostasis plays a critical role in the regulation of microspore embryogenesis (ME). The balance between endogenous phytohormones must be altered to induce microspore reprogramming from the classical pollen-formation pathway to embryogenic development, but too extensive changes may be detrimental. In the present study, the levels of auxins, cytokinins and abscisic acid were monitored in the anthers of two Polish winter wheat F1 lines and the spring cultivar Pavon highly differentiated in terms of ME effectiveness. Analyses were carried out at subsequent steps of the ME induction procedure that combined low temperature, sodium selenate and mannitol tiller pre-treatment.
Results: Of all the factors tested, mannitol induced the most profound effect on phytohormones and their homeostasis in wheat anthers. It significantly increased the accumulation of all auxins and decreased the levels of most cytokinins, while the change in ABA content was limited to cv. Pavon. In an attempt to alleviate this hormonal shock, we tested several modifications of the induction medium hormonal composition and found thidiazuron to be the most promising in stimulating the embryogenic development of wheat microspores.
Conclusions: The lack of ABA-driven stress defence responses may be one of the reasons for the low effectiveness of ME induction in winter wheat microspore cultures. Low cytokinin level and a disturbed auxin/cytokinin balance may then be responsible for the morphological abnormalities observed during the next phases of embryogenic microspore development. One possible solution is to modify the hormonal composition of the induction medium with thidiazuron identified as the most promising component.
期刊介绍:
BMC Plant Biology is an open access, peer-reviewed journal that considers articles on all aspects of plant biology, including molecular, cellular, tissue, organ and whole organism research.