合成数据在信息安全领域异常检测问题中的应用

IF 0.5 Q4 COMPUTER SCIENCE, INFORMATION SYSTEMS
A. I. Gurianov
{"title":"合成数据在信息安全领域异常检测问题中的应用","authors":"A. I. Gurianov","doi":"10.3103/S0005105525700128","DOIUrl":null,"url":null,"abstract":"<div><p>Synthetic data are highly relevant for machine learning. Modern algorithms to generate synthetic data make it possible to generate data that are very similar in their statistical properties to the original data. Synthetic data is used in practice in a wide range of tasks, including those related to data augmentation. The author of the article proposes a method of data augmentation combining the approaches of increasing the sample size using synthetic data and synthetic anomaly generation. This method has been used to address the information security problem of anomaly detection in server logs to detect attacks. The model trained for the task presents high results. This demonstrates the effectiveness of the use of synthetic data to increase sample size and generate anomalies, as well as the ability to use these approaches together with high efficiency.</p></div>","PeriodicalId":42995,"journal":{"name":"AUTOMATIC DOCUMENTATION AND MATHEMATICAL LINGUISTICS","volume":"58 2 supplement","pages":"S68 - S72"},"PeriodicalIF":0.5000,"publicationDate":"2025-03-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Application of Synthetic Data to the Problem of Anomaly Detection in the Field of Information Security\",\"authors\":\"A. I. Gurianov\",\"doi\":\"10.3103/S0005105525700128\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Synthetic data are highly relevant for machine learning. Modern algorithms to generate synthetic data make it possible to generate data that are very similar in their statistical properties to the original data. Synthetic data is used in practice in a wide range of tasks, including those related to data augmentation. The author of the article proposes a method of data augmentation combining the approaches of increasing the sample size using synthetic data and synthetic anomaly generation. This method has been used to address the information security problem of anomaly detection in server logs to detect attacks. The model trained for the task presents high results. This demonstrates the effectiveness of the use of synthetic data to increase sample size and generate anomalies, as well as the ability to use these approaches together with high efficiency.</p></div>\",\"PeriodicalId\":42995,\"journal\":{\"name\":\"AUTOMATIC DOCUMENTATION AND MATHEMATICAL LINGUISTICS\",\"volume\":\"58 2 supplement\",\"pages\":\"S68 - S72\"},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2025-03-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"AUTOMATIC DOCUMENTATION AND MATHEMATICAL LINGUISTICS\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://link.springer.com/article/10.3103/S0005105525700128\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"AUTOMATIC DOCUMENTATION AND MATHEMATICAL LINGUISTICS","FirstCategoryId":"1085","ListUrlMain":"https://link.springer.com/article/10.3103/S0005105525700128","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0

摘要

合成数据与机器学习密切相关。生成合成数据的现代算法可以生成在统计特性上与原始数据非常相似的数据。合成数据在实践中被广泛用于各种任务,包括与数据增强相关的任务。文章作者提出了一种数据扩增方法,它结合了使用合成数据增加样本量和合成异常生成两种方法。这种方法已被用于解决服务器日志中的异常检测这一信息安全问题,以检测攻击行为。为该任务训练的模型取得了很好的效果。这证明了使用合成数据来增加样本量和生成异常数据的有效性,以及同时高效使用这些方法的能力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Application of Synthetic Data to the Problem of Anomaly Detection in the Field of Information Security

Application of Synthetic Data to the Problem of Anomaly Detection in the Field of Information Security

Synthetic data are highly relevant for machine learning. Modern algorithms to generate synthetic data make it possible to generate data that are very similar in their statistical properties to the original data. Synthetic data is used in practice in a wide range of tasks, including those related to data augmentation. The author of the article proposes a method of data augmentation combining the approaches of increasing the sample size using synthetic data and synthetic anomaly generation. This method has been used to address the information security problem of anomaly detection in server logs to detect attacks. The model trained for the task presents high results. This demonstrates the effectiveness of the use of synthetic data to increase sample size and generate anomalies, as well as the ability to use these approaches together with high efficiency.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
AUTOMATIC DOCUMENTATION AND MATHEMATICAL LINGUISTICS
AUTOMATIC DOCUMENTATION AND MATHEMATICAL LINGUISTICS COMPUTER SCIENCE, INFORMATION SYSTEMS-
自引率
40.00%
发文量
18
期刊介绍: Automatic Documentation and Mathematical Linguistics  is an international peer reviewed journal that covers all aspects of automation of information processes and systems, as well as algorithms and methods for automatic language analysis. Emphasis is on the practical applications of new technologies and techniques for information analysis and processing.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信