高温隐身跨越多红外和微波波段与有效的辐射热管理

IF 26.6 1区 材料科学 Q1 Engineering
Meng Zhao, Huanzheng Zhu, Bing Qin, Rongxuan Zhu, Jihao Zhang, Pintu Ghosh, Zuojia Wang, Min Qiu, Qiang Li
{"title":"高温隐身跨越多红外和微波波段与有效的辐射热管理","authors":"Meng Zhao,&nbsp;Huanzheng Zhu,&nbsp;Bing Qin,&nbsp;Rongxuan Zhu,&nbsp;Jihao Zhang,&nbsp;Pintu Ghosh,&nbsp;Zuojia Wang,&nbsp;Min Qiu,&nbsp;Qiang Li","doi":"10.1007/s40820-025-01712-5","DOIUrl":null,"url":null,"abstract":"<div><p>High-temperature stealth is vital for enhancing the concealment, survivability, and longevity of critical assets. However, achieving stealth across multiple infrared bands—particularly in the short-wave infrared (SWIR) band—along with microwave stealth and efficient thermal management at high temperatures, remains a significant challenge. Here, we propose a strategy that integrates an IR-selective emitter (Mo/Si multilayer films) and a microwave metasurface (TiB<sub>2</sub>–Al<sub>2</sub>O<sub>3</sub>–TiB<sub>2</sub>) to enable multi-infrared band stealth, encompassing mid-wave infrared (MWIR), long-wave infrared (LWIR), and SWIR bands, and microwave (X-band) stealth at 700 °C, with simultaneous radiative cooling in non-atmospheric window (5–8 μm). At 700 °C, the device exhibits low emissivity of 0.38/0.44/0.60 in the MWIR/LWIR/SWIR bands, reflection loss below − 3 dB in the X-band (9.6–12 GHz), and high emissivity of 0.82 in 5–8 μm range—corresponding to a cooling power of 9.57 kW m<sup>−2</sup>. Moreover, under an input power of 17.3 kW m<sup>−2</sup>—equivalent to the aerodynamic heating at Mach 2.2—the device demonstrates a temperature reduction of 72.4 °C compared to a conventional low-emissivity molybdenum surface at high temperatures. This work provides comprehensive guidance on high-temperature stealth design, with far-reaching implications for multispectral information processing and thermal management in extreme high-temperature environments.</p><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":714,"journal":{"name":"Nano-Micro Letters","volume":"17 1","pages":""},"PeriodicalIF":26.6000,"publicationDate":"2025-03-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s40820-025-01712-5.pdf","citationCount":"0","resultStr":"{\"title\":\"High-Temperature Stealth Across Multi-Infrared and Microwave Bands with Efficient Radiative Thermal Management\",\"authors\":\"Meng Zhao,&nbsp;Huanzheng Zhu,&nbsp;Bing Qin,&nbsp;Rongxuan Zhu,&nbsp;Jihao Zhang,&nbsp;Pintu Ghosh,&nbsp;Zuojia Wang,&nbsp;Min Qiu,&nbsp;Qiang Li\",\"doi\":\"10.1007/s40820-025-01712-5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>High-temperature stealth is vital for enhancing the concealment, survivability, and longevity of critical assets. However, achieving stealth across multiple infrared bands—particularly in the short-wave infrared (SWIR) band—along with microwave stealth and efficient thermal management at high temperatures, remains a significant challenge. Here, we propose a strategy that integrates an IR-selective emitter (Mo/Si multilayer films) and a microwave metasurface (TiB<sub>2</sub>–Al<sub>2</sub>O<sub>3</sub>–TiB<sub>2</sub>) to enable multi-infrared band stealth, encompassing mid-wave infrared (MWIR), long-wave infrared (LWIR), and SWIR bands, and microwave (X-band) stealth at 700 °C, with simultaneous radiative cooling in non-atmospheric window (5–8 μm). At 700 °C, the device exhibits low emissivity of 0.38/0.44/0.60 in the MWIR/LWIR/SWIR bands, reflection loss below − 3 dB in the X-band (9.6–12 GHz), and high emissivity of 0.82 in 5–8 μm range—corresponding to a cooling power of 9.57 kW m<sup>−2</sup>. Moreover, under an input power of 17.3 kW m<sup>−2</sup>—equivalent to the aerodynamic heating at Mach 2.2—the device demonstrates a temperature reduction of 72.4 °C compared to a conventional low-emissivity molybdenum surface at high temperatures. This work provides comprehensive guidance on high-temperature stealth design, with far-reaching implications for multispectral information processing and thermal management in extreme high-temperature environments.</p><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>\",\"PeriodicalId\":714,\"journal\":{\"name\":\"Nano-Micro Letters\",\"volume\":\"17 1\",\"pages\":\"\"},\"PeriodicalIF\":26.6000,\"publicationDate\":\"2025-03-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s40820-025-01712-5.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nano-Micro Letters\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s40820-025-01712-5\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Engineering\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nano-Micro Letters","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s40820-025-01712-5","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 0

摘要

高温隐身对于提高关键装备的隐蔽性、生存能力和寿命至关重要。然而,实现多红外波段隐身,特别是短波红外(SWIR)波段隐身,以及微波隐身和高温下的高效热管理,仍然是一个重大挑战。在这里,我们提出了一种集成红外选择性发射器(Mo/Si多层膜)和微波超表面(TiB2-Al2O3-TiB2)的策略,以实现700°C下的多红外波段隐身,包括中波红外(MWIR),长波红外(LWIR)和SWIR波段,以及微波(x波段)隐身,同时在非大气窗口(5-8 μm)进行辐射冷却。在700°C时,该器件在MWIR/LWIR/SWIR波段的发射率为0.38/0.44/0.60,在x波段(9.6-12 GHz)的反射损耗低于- 3 dB,在5-8 μm范围内的发射率为0.82,对应的冷却功率为9.57 kW m−2。此外,在17.3 kW m−(相当于2.2马赫的空气动力加热)的输入功率下,与传统的低发射率钼表面相比,该器件在高温下的温度降低了72.4°C。这项工作为高温隐身设计提供了全面的指导,对极端高温环境下的多光谱信息处理和热管理具有深远的意义。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
High-Temperature Stealth Across Multi-Infrared and Microwave Bands with Efficient Radiative Thermal Management

High-temperature stealth is vital for enhancing the concealment, survivability, and longevity of critical assets. However, achieving stealth across multiple infrared bands—particularly in the short-wave infrared (SWIR) band—along with microwave stealth and efficient thermal management at high temperatures, remains a significant challenge. Here, we propose a strategy that integrates an IR-selective emitter (Mo/Si multilayer films) and a microwave metasurface (TiB2–Al2O3–TiB2) to enable multi-infrared band stealth, encompassing mid-wave infrared (MWIR), long-wave infrared (LWIR), and SWIR bands, and microwave (X-band) stealth at 700 °C, with simultaneous radiative cooling in non-atmospheric window (5–8 μm). At 700 °C, the device exhibits low emissivity of 0.38/0.44/0.60 in the MWIR/LWIR/SWIR bands, reflection loss below − 3 dB in the X-band (9.6–12 GHz), and high emissivity of 0.82 in 5–8 μm range—corresponding to a cooling power of 9.57 kW m−2. Moreover, under an input power of 17.3 kW m−2—equivalent to the aerodynamic heating at Mach 2.2—the device demonstrates a temperature reduction of 72.4 °C compared to a conventional low-emissivity molybdenum surface at high temperatures. This work provides comprehensive guidance on high-temperature stealth design, with far-reaching implications for multispectral information processing and thermal management in extreme high-temperature environments.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Nano-Micro Letters
Nano-Micro Letters NANOSCIENCE & NANOTECHNOLOGY-MATERIALS SCIENCE, MULTIDISCIPLINARY
CiteScore
32.60
自引率
4.90%
发文量
981
审稿时长
1.1 months
期刊介绍: Nano-Micro Letters is a peer-reviewed, international, interdisciplinary, and open-access journal published under the SpringerOpen brand. Nano-Micro Letters focuses on the science, experiments, engineering, technologies, and applications of nano- or microscale structures and systems in various fields such as physics, chemistry, biology, material science, and pharmacy.It also explores the expanding interfaces between these fields. Nano-Micro Letters particularly emphasizes the bottom-up approach in the length scale from nano to micro. This approach is crucial for achieving industrial applications in nanotechnology, as it involves the assembly, modification, and control of nanostructures on a microscale.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信