使用新型Ti3C2@CoAl2O4纳米复合材料的高灵敏度电化学测定卡吡嗪:在药物和生物样品分析中的应用

IF 5.3 2区 化学 Q1 CHEMISTRY, ANALYTICAL
Elif Naz Öven, Asena Ayse Genc, Nevin Erk, Wiem Bouali, Qamar Salamat, Mustafa Soylak
{"title":"使用新型Ti3C2@CoAl2O4纳米复合材料的高灵敏度电化学测定卡吡嗪:在药物和生物样品分析中的应用","authors":"Elif Naz Öven,&nbsp;Asena Ayse Genc,&nbsp;Nevin Erk,&nbsp;Wiem Bouali,&nbsp;Qamar Salamat,&nbsp;Mustafa Soylak","doi":"10.1007/s00604-025-07104-1","DOIUrl":null,"url":null,"abstract":"<div><p>Cariprazine (CAR) is an atypical antipsychotic drug used for the treatment of schizophrenia and bipolar disorder. This study presents the development of a novel, highly sensitive electrochemical sensor based on a Ti<sub>3</sub>C<sub>2</sub>@CoAl<sub>2</sub>O<sub>2</sub> nanocomposite–modified glassy carbon electrode (GCE) for the detection of CAR in pharmaceutical and biological samples. The innovative Ti<sub>3</sub>C<sub>2</sub>@CoAl<sub>2</sub>O<sub>2</sub> composite, synthesized and characterized through Fourier-transform infrared spectroscopy, X-ray diffraction, scanning electron microscopy coupled with energy-dispersive spectroscopy, and thermogravimetric analysis, revealed exceptional structural integrity, morphology, composition, and thermal stability. The electrochemical properties of the modified electrode were evaluated using cyclic voltammetry and electrochemical impedance spectroscopy, demonstrating enhanced conductivity, an increased electroactive surface area, and reduced charge transfer resistance compared to the bare GCE. Differential pulse voltammetry was employed for CAR detection under optimized conditions, yielding a linear range of 0.2–5.6 μM with a regression equation <i>I</i><sub>pa</sub> (μA) = 0.133 <i>C</i><sub>CAR</sub> (μM) + 0.09 (<i>R</i><sup>2</sup> = 0.993). The limit of detection and limit of quantification were determined as 0.02 µM and 0.07 µM, respectively, highlighting the sensor’s high sensitivity. The modified electrode exhibited excellent repeatability with a relative standard deviation (RSD) of = 2.9% and reproducibility (RSD = 2.8%), along with strong selectivity against common interfering substances. The sensor was successfully applied to human blood serum, urine, and CAR tablets, achieving high recovery values (98.52–103.94%), confirming its reliability for real-sample analysis. These findings underline the novelty and potential of the Ti<sub>3</sub>C<sub>2</sub>@CoAl<sub>2</sub>O<sub>2</sub>-modified GCE as a powerful tool for the accurate, selective, and sensitive determination of CAR in clinical and pharmaceutical applications.</p><h3>Graphical Abstract</h3>\n<div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":705,"journal":{"name":"Microchimica Acta","volume":"192 4","pages":""},"PeriodicalIF":5.3000,"publicationDate":"2025-03-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s00604-025-07104-1.pdf","citationCount":"0","resultStr":"{\"title\":\"Highly sensitive electrochemical determination of cariprazine using a novel Ti3C2@CoAl2O4 nanocomposite: application to pharmaceutical and biological sample analysis\",\"authors\":\"Elif Naz Öven,&nbsp;Asena Ayse Genc,&nbsp;Nevin Erk,&nbsp;Wiem Bouali,&nbsp;Qamar Salamat,&nbsp;Mustafa Soylak\",\"doi\":\"10.1007/s00604-025-07104-1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Cariprazine (CAR) is an atypical antipsychotic drug used for the treatment of schizophrenia and bipolar disorder. This study presents the development of a novel, highly sensitive electrochemical sensor based on a Ti<sub>3</sub>C<sub>2</sub>@CoAl<sub>2</sub>O<sub>2</sub> nanocomposite–modified glassy carbon electrode (GCE) for the detection of CAR in pharmaceutical and biological samples. The innovative Ti<sub>3</sub>C<sub>2</sub>@CoAl<sub>2</sub>O<sub>2</sub> composite, synthesized and characterized through Fourier-transform infrared spectroscopy, X-ray diffraction, scanning electron microscopy coupled with energy-dispersive spectroscopy, and thermogravimetric analysis, revealed exceptional structural integrity, morphology, composition, and thermal stability. The electrochemical properties of the modified electrode were evaluated using cyclic voltammetry and electrochemical impedance spectroscopy, demonstrating enhanced conductivity, an increased electroactive surface area, and reduced charge transfer resistance compared to the bare GCE. Differential pulse voltammetry was employed for CAR detection under optimized conditions, yielding a linear range of 0.2–5.6 μM with a regression equation <i>I</i><sub>pa</sub> (μA) = 0.133 <i>C</i><sub>CAR</sub> (μM) + 0.09 (<i>R</i><sup>2</sup> = 0.993). The limit of detection and limit of quantification were determined as 0.02 µM and 0.07 µM, respectively, highlighting the sensor’s high sensitivity. The modified electrode exhibited excellent repeatability with a relative standard deviation (RSD) of = 2.9% and reproducibility (RSD = 2.8%), along with strong selectivity against common interfering substances. The sensor was successfully applied to human blood serum, urine, and CAR tablets, achieving high recovery values (98.52–103.94%), confirming its reliability for real-sample analysis. These findings underline the novelty and potential of the Ti<sub>3</sub>C<sub>2</sub>@CoAl<sub>2</sub>O<sub>2</sub>-modified GCE as a powerful tool for the accurate, selective, and sensitive determination of CAR in clinical and pharmaceutical applications.</p><h3>Graphical Abstract</h3>\\n<div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>\",\"PeriodicalId\":705,\"journal\":{\"name\":\"Microchimica Acta\",\"volume\":\"192 4\",\"pages\":\"\"},\"PeriodicalIF\":5.3000,\"publicationDate\":\"2025-03-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s00604-025-07104-1.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Microchimica Acta\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s00604-025-07104-1\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, ANALYTICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Microchimica Acta","FirstCategoryId":"92","ListUrlMain":"https://link.springer.com/article/10.1007/s00604-025-07104-1","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0

摘要

Cariprazine (CAR)是一种非典型抗精神病药物,用于治疗精神分裂症和双相情感障碍。本研究提出了一种基于Ti3C2@CoAl2O2纳米复合材料修饰的玻璃碳电极(GCE)的新型高灵敏度电化学传感器的开发,用于检测药物和生物样品中的CAR。通过傅里叶变换红外光谱、x射线衍射、扫描电子显微镜、能量色散光谱和热重分析合成和表征了这种创新的Ti3C2@CoAl2O2复合材料,揭示了卓越的结构完整性、形态、成分和热稳定性。利用循环伏安法和电化学阻抗谱对修饰电极的电化学性能进行了评估,表明与裸GCE相比,修饰电极的电导率增强,电活性表面积增加,电荷转移电阻降低。在优化条件下,差分脉冲伏安法检测CAR的线性范围为0.2 ~ 5.6 μM,回归方程为Ipa (μA) = 0.133 CCAR (μA) + 0.09 (R2 = 0.993)。检测限和定量限分别为0.02µM和0.07µM,突出了传感器的高灵敏度。该电极具有良好的重复性,相对标准偏差(RSD)为2.9%,重现性(RSD = 2.8%),对常见干扰物质有较强的选择性。该传感器成功应用于人血清、尿液和CAR片,回收率高(98.52 ~ 103.94%),可用于实际样品分析。这些发现强调了Ti3C2@CoAl2O2-modified GCE作为临床和制药应用中精确、选择性和敏感测定CAR的强大工具的新颖性和潜力。图形抽象
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Highly sensitive electrochemical determination of cariprazine using a novel Ti3C2@CoAl2O4 nanocomposite: application to pharmaceutical and biological sample analysis

Cariprazine (CAR) is an atypical antipsychotic drug used for the treatment of schizophrenia and bipolar disorder. This study presents the development of a novel, highly sensitive electrochemical sensor based on a Ti3C2@CoAl2O2 nanocomposite–modified glassy carbon electrode (GCE) for the detection of CAR in pharmaceutical and biological samples. The innovative Ti3C2@CoAl2O2 composite, synthesized and characterized through Fourier-transform infrared spectroscopy, X-ray diffraction, scanning electron microscopy coupled with energy-dispersive spectroscopy, and thermogravimetric analysis, revealed exceptional structural integrity, morphology, composition, and thermal stability. The electrochemical properties of the modified electrode were evaluated using cyclic voltammetry and electrochemical impedance spectroscopy, demonstrating enhanced conductivity, an increased electroactive surface area, and reduced charge transfer resistance compared to the bare GCE. Differential pulse voltammetry was employed for CAR detection under optimized conditions, yielding a linear range of 0.2–5.6 μM with a regression equation Ipa (μA) = 0.133 CCAR (μM) + 0.09 (R2 = 0.993). The limit of detection and limit of quantification were determined as 0.02 µM and 0.07 µM, respectively, highlighting the sensor’s high sensitivity. The modified electrode exhibited excellent repeatability with a relative standard deviation (RSD) of = 2.9% and reproducibility (RSD = 2.8%), along with strong selectivity against common interfering substances. The sensor was successfully applied to human blood serum, urine, and CAR tablets, achieving high recovery values (98.52–103.94%), confirming its reliability for real-sample analysis. These findings underline the novelty and potential of the Ti3C2@CoAl2O2-modified GCE as a powerful tool for the accurate, selective, and sensitive determination of CAR in clinical and pharmaceutical applications.

Graphical Abstract

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Microchimica Acta
Microchimica Acta 化学-分析化学
CiteScore
9.80
自引率
5.30%
发文量
410
审稿时长
2.7 months
期刊介绍: As a peer-reviewed journal for analytical sciences and technologies on the micro- and nanoscale, Microchimica Acta has established itself as a premier forum for truly novel approaches in chemical and biochemical analysis. Coverage includes methods and devices that provide expedient solutions to the most contemporary demands in this area. Examples are point-of-care technologies, wearable (bio)sensors, in-vivo-monitoring, micro/nanomotors and materials based on synthetic biology as well as biomedical imaging and targeting.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信