{"title":"22nm FD-SOI CMOS工艺单端/差分宽带跟踪保持放大器","authors":"Zixian Zheng;Wei Shu;Joseph S. Chang","doi":"10.1109/TVLSI.2024.3518512","DOIUrl":null,"url":null,"abstract":"The impending 6G communication based on the software defined radio (SDR) requires a radio frequency (RF) track-and-hold amplifier (THA). This THA serves as the frequency down-converter and the single-to-differential interface to the downstream analog-to-digital converter (ADC). We present a CMOS RF THA that features wide and width (18 GHz), yet high linearity (spurious free dynamic range (SFDR) of 56.7 dB) and not requiring an external balun. These features are derived from our proposed isolation technique based on our proposed double source follower enhanced (DSFE) structure. To realize the single-to-differential conversion without an external balun, we design an independent balun as the first stage. Thereafter, we employ our proposed feedforward compensation technique (FCT) along with the reported phase correction technique (PCT) to reduce the output mismatches while simultaneously enhancing the linearity and bandwidth. We monolithically realize the RF THA in 22-nm fully-depleted silicon-on-insulator (FD-SOI) CMOS operating at 1.8 V. Measurements depict that the input bandwidth is wide (18 GHz), yet featuring high linearity (SFDR =56.7 dB at 15 GHz) with 2 GS/s sampling rate. The power consumption and the chip area are low and small at 216 mW and 0.07 mm2, respectively. When benchmarked against reported III/V RF THAs, the proposed CMOS RF THA is very competitive—comparable bandwidth, yet simultaneously higher linearity, potentially lower cost, lower power dissipation, and smaller die area. Further because it is realized in CMOS, it facilitates integration to other CMOS circuits in the same system-on-chip (SoC).","PeriodicalId":13425,"journal":{"name":"IEEE Transactions on Very Large Scale Integration (VLSI) Systems","volume":"33 4","pages":"942-952"},"PeriodicalIF":2.8000,"publicationDate":"2024-12-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Single-Ended/Differential Wideband Track-and-Hold Amplifier in 22-nm FD-SOI CMOS Process\",\"authors\":\"Zixian Zheng;Wei Shu;Joseph S. Chang\",\"doi\":\"10.1109/TVLSI.2024.3518512\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The impending 6G communication based on the software defined radio (SDR) requires a radio frequency (RF) track-and-hold amplifier (THA). This THA serves as the frequency down-converter and the single-to-differential interface to the downstream analog-to-digital converter (ADC). We present a CMOS RF THA that features wide and width (18 GHz), yet high linearity (spurious free dynamic range (SFDR) of 56.7 dB) and not requiring an external balun. These features are derived from our proposed isolation technique based on our proposed double source follower enhanced (DSFE) structure. To realize the single-to-differential conversion without an external balun, we design an independent balun as the first stage. Thereafter, we employ our proposed feedforward compensation technique (FCT) along with the reported phase correction technique (PCT) to reduce the output mismatches while simultaneously enhancing the linearity and bandwidth. We monolithically realize the RF THA in 22-nm fully-depleted silicon-on-insulator (FD-SOI) CMOS operating at 1.8 V. Measurements depict that the input bandwidth is wide (18 GHz), yet featuring high linearity (SFDR =56.7 dB at 15 GHz) with 2 GS/s sampling rate. The power consumption and the chip area are low and small at 216 mW and 0.07 mm2, respectively. When benchmarked against reported III/V RF THAs, the proposed CMOS RF THA is very competitive—comparable bandwidth, yet simultaneously higher linearity, potentially lower cost, lower power dissipation, and smaller die area. Further because it is realized in CMOS, it facilitates integration to other CMOS circuits in the same system-on-chip (SoC).\",\"PeriodicalId\":13425,\"journal\":{\"name\":\"IEEE Transactions on Very Large Scale Integration (VLSI) Systems\",\"volume\":\"33 4\",\"pages\":\"942-952\"},\"PeriodicalIF\":2.8000,\"publicationDate\":\"2024-12-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Transactions on Very Large Scale Integration (VLSI) Systems\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10814652/\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Very Large Scale Integration (VLSI) Systems","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10814652/","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE","Score":null,"Total":0}
Single-Ended/Differential Wideband Track-and-Hold Amplifier in 22-nm FD-SOI CMOS Process
The impending 6G communication based on the software defined radio (SDR) requires a radio frequency (RF) track-and-hold amplifier (THA). This THA serves as the frequency down-converter and the single-to-differential interface to the downstream analog-to-digital converter (ADC). We present a CMOS RF THA that features wide and width (18 GHz), yet high linearity (spurious free dynamic range (SFDR) of 56.7 dB) and not requiring an external balun. These features are derived from our proposed isolation technique based on our proposed double source follower enhanced (DSFE) structure. To realize the single-to-differential conversion without an external balun, we design an independent balun as the first stage. Thereafter, we employ our proposed feedforward compensation technique (FCT) along with the reported phase correction technique (PCT) to reduce the output mismatches while simultaneously enhancing the linearity and bandwidth. We monolithically realize the RF THA in 22-nm fully-depleted silicon-on-insulator (FD-SOI) CMOS operating at 1.8 V. Measurements depict that the input bandwidth is wide (18 GHz), yet featuring high linearity (SFDR =56.7 dB at 15 GHz) with 2 GS/s sampling rate. The power consumption and the chip area are low and small at 216 mW and 0.07 mm2, respectively. When benchmarked against reported III/V RF THAs, the proposed CMOS RF THA is very competitive—comparable bandwidth, yet simultaneously higher linearity, potentially lower cost, lower power dissipation, and smaller die area. Further because it is realized in CMOS, it facilitates integration to other CMOS circuits in the same system-on-chip (SoC).
期刊介绍:
The IEEE Transactions on VLSI Systems is published as a monthly journal under the co-sponsorship of the IEEE Circuits and Systems Society, the IEEE Computer Society, and the IEEE Solid-State Circuits Society.
Design and realization of microelectronic systems using VLSI/ULSI technologies require close collaboration among scientists and engineers in the fields of systems architecture, logic and circuit design, chips and wafer fabrication, packaging, testing and systems applications. Generation of specifications, design and verification must be performed at all abstraction levels, including the system, register-transfer, logic, circuit, transistor and process levels.
To address this critical area through a common forum, the IEEE Transactions on VLSI Systems have been founded. The editorial board, consisting of international experts, invites original papers which emphasize and merit the novel systems integration aspects of microelectronic systems including interactions among systems design and partitioning, logic and memory design, digital and analog circuit design, layout synthesis, CAD tools, chips and wafer fabrication, testing and packaging, and systems level qualification. Thus, the coverage of these Transactions will focus on VLSI/ULSI microelectronic systems integration.