圆柱形锂离子电池热失控及临界特性比较研究综述

Wei Li, Jiasheng Wang, Chunfeng Sun, Xiaoping Fan, Lingzhu Gong*, Jiale Huang*, Jian-heng Wu, Gending Yu, Rongguo Chen, Jingling Li and Yih-Shing Duh*, 
{"title":"圆柱形锂离子电池热失控及临界特性比较研究综述","authors":"Wei Li,&nbsp;Jiasheng Wang,&nbsp;Chunfeng Sun,&nbsp;Xiaoping Fan,&nbsp;Lingzhu Gong*,&nbsp;Jiale Huang*,&nbsp;Jian-heng Wu,&nbsp;Gending Yu,&nbsp;Rongguo Chen,&nbsp;Jingling Li and Yih-Shing Duh*,&nbsp;","doi":"10.1021/acs.chas.4c0012110.1021/acs.chas.4c00121","DOIUrl":null,"url":null,"abstract":"<p >The thermal hazard results of commercial cylindrical lithium-ion batteries (LIBs) of different sizes from international laboratories are reviewed and discussed. The four types discussed encompass 14500, 18650, 21700, and 26650 ones. Characteristic data from the calorimeter include onset temperature, critical temperature, maximum temperature, maximum self-heat rate, enthalpy change, and quantity of noncondensable gases. By integrating thermal hazard data, a box-plot was established and hazard ranking was clearly evaluated as 21700 &gt; 18650 non-LiFePO<sub>4</sub> (LFP) ≫ 26650 LFP &gt; 14500 non-LFP &gt; 18650 LFP &gt; 14500 LFP. Among all types of cylindrical lithium-ion batteries, the 21700 exhibits the worst consequence, which is attributed to the adoption of high energy density LiNi<sub>0.8</sub>Co<sub>0.15</sub>Al<sub>0.05</sub>O<sub>2</sub> (NCA) and LiNi<sub><i>x</i></sub>Mn<sub><i>y</i></sub>Co<sub><i>z</i></sub>O<sub>2</sub> (NMC) cathode materials. It was found that the critical temperature <i>T</i><sub>cr</sub> and maximum temperature broadly scattered; besides, most of the maximum self-heat rate (d<i>T</i>/d<i>t</i>) and pressure data were absent in literature. Definitions of onset temperature, critical temperature, trigger temperature, and possible heat sources to stimulate the severe thermal runaway were collected and found to be unimaginably divergent. A thermal analysis database was established to classify critical temperatures into high <i>T</i><sub>cr</sub> (above 180 °C), low <i>T</i><sub>cr</sub> (130–180 °C), and no <i>T</i><sub>cr</sub>. The low <i>T</i><sub>cr</sub> inducement is speculated to be caused by gas shock or electron breakdown after the separator melted, while the intrinsic characteristics of <i>T</i><sub>cr</sub> require further investigation. Thermal runaway features of cylindrical LIBs can be concisely classified as lowest <i>T</i><sub>onset</sub> of 88.0 °C (21700 NMC) vs highest <i>T</i><sub>onset</sub> of 220.0 °C (18650 LFP), highest (d<i>T</i>/d<i>t</i>)<sub>max</sub> of 64536.0 °C min<sup>–1</sup> (21700 NCA) vs lowest (d<i>T</i>/d<i>t</i>)<sub>max</sub> of 3.0 °C min<sup>–1</sup> (18650 LFP), highest <i>T</i><sub>max</sub> of 1257.9 °C (21700 NCA) vs lowest <i>T</i><sub>max</sub> of 243.2 °C (18650 LFP), highest Δ<i>n</i> of 314.0 mmol (18650 NCA) vs lowest Δ<i>n</i> of 23.3 mmol (14500 LFP), lowest <i>T</i><sub>cr</sub> of 145.5 °C (21700 NCA) vs (no <i>T</i><sub>cr</sub>) (14500 and 18650 LFP), and highest Δ<i>H</i> of 70.5 kJ (21700 NCA) vs lowest Δ<i>H</i> of 0.8 kJ (14500 LFP). In this work, the present research is reviewed in detail and future perspectives are proposed. This review on the critical characteristics of cylindrical batteries under thermal failure and thermal abuse provides a reference for solving intrinsic safety issues for lithium-ion batteries of the next generation.</p>","PeriodicalId":73648,"journal":{"name":"Journal of chemical health & safety","volume":"32 2","pages":"133–156 133–156"},"PeriodicalIF":0.0000,"publicationDate":"2025-03-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Comparison on Thermal Runaway and Critical Characteristics of Cylindrical Lithium-Ion Batteries: A Review\",\"authors\":\"Wei Li,&nbsp;Jiasheng Wang,&nbsp;Chunfeng Sun,&nbsp;Xiaoping Fan,&nbsp;Lingzhu Gong*,&nbsp;Jiale Huang*,&nbsp;Jian-heng Wu,&nbsp;Gending Yu,&nbsp;Rongguo Chen,&nbsp;Jingling Li and Yih-Shing Duh*,&nbsp;\",\"doi\":\"10.1021/acs.chas.4c0012110.1021/acs.chas.4c00121\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >The thermal hazard results of commercial cylindrical lithium-ion batteries (LIBs) of different sizes from international laboratories are reviewed and discussed. The four types discussed encompass 14500, 18650, 21700, and 26650 ones. Characteristic data from the calorimeter include onset temperature, critical temperature, maximum temperature, maximum self-heat rate, enthalpy change, and quantity of noncondensable gases. By integrating thermal hazard data, a box-plot was established and hazard ranking was clearly evaluated as 21700 &gt; 18650 non-LiFePO<sub>4</sub> (LFP) ≫ 26650 LFP &gt; 14500 non-LFP &gt; 18650 LFP &gt; 14500 LFP. Among all types of cylindrical lithium-ion batteries, the 21700 exhibits the worst consequence, which is attributed to the adoption of high energy density LiNi<sub>0.8</sub>Co<sub>0.15</sub>Al<sub>0.05</sub>O<sub>2</sub> (NCA) and LiNi<sub><i>x</i></sub>Mn<sub><i>y</i></sub>Co<sub><i>z</i></sub>O<sub>2</sub> (NMC) cathode materials. It was found that the critical temperature <i>T</i><sub>cr</sub> and maximum temperature broadly scattered; besides, most of the maximum self-heat rate (d<i>T</i>/d<i>t</i>) and pressure data were absent in literature. Definitions of onset temperature, critical temperature, trigger temperature, and possible heat sources to stimulate the severe thermal runaway were collected and found to be unimaginably divergent. A thermal analysis database was established to classify critical temperatures into high <i>T</i><sub>cr</sub> (above 180 °C), low <i>T</i><sub>cr</sub> (130–180 °C), and no <i>T</i><sub>cr</sub>. The low <i>T</i><sub>cr</sub> inducement is speculated to be caused by gas shock or electron breakdown after the separator melted, while the intrinsic characteristics of <i>T</i><sub>cr</sub> require further investigation. Thermal runaway features of cylindrical LIBs can be concisely classified as lowest <i>T</i><sub>onset</sub> of 88.0 °C (21700 NMC) vs highest <i>T</i><sub>onset</sub> of 220.0 °C (18650 LFP), highest (d<i>T</i>/d<i>t</i>)<sub>max</sub> of 64536.0 °C min<sup>–1</sup> (21700 NCA) vs lowest (d<i>T</i>/d<i>t</i>)<sub>max</sub> of 3.0 °C min<sup>–1</sup> (18650 LFP), highest <i>T</i><sub>max</sub> of 1257.9 °C (21700 NCA) vs lowest <i>T</i><sub>max</sub> of 243.2 °C (18650 LFP), highest Δ<i>n</i> of 314.0 mmol (18650 NCA) vs lowest Δ<i>n</i> of 23.3 mmol (14500 LFP), lowest <i>T</i><sub>cr</sub> of 145.5 °C (21700 NCA) vs (no <i>T</i><sub>cr</sub>) (14500 and 18650 LFP), and highest Δ<i>H</i> of 70.5 kJ (21700 NCA) vs lowest Δ<i>H</i> of 0.8 kJ (14500 LFP). In this work, the present research is reviewed in detail and future perspectives are proposed. This review on the critical characteristics of cylindrical batteries under thermal failure and thermal abuse provides a reference for solving intrinsic safety issues for lithium-ion batteries of the next generation.</p>\",\"PeriodicalId\":73648,\"journal\":{\"name\":\"Journal of chemical health & safety\",\"volume\":\"32 2\",\"pages\":\"133–156 133–156\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-03-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of chemical health & safety\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://pubs.acs.org/doi/10.1021/acs.chas.4c00121\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of chemical health & safety","FirstCategoryId":"1085","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acs.chas.4c00121","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

对国际上不同尺寸的商用圆柱形锂离子电池的热危害结果进行了综述和讨论。所讨论的四种类型包括14500、18650、21700和26650。量热计的特征数据包括起始温度、临界温度、最高温度、最大自热速率、焓变和不可冷凝气体的数量。通过对热危害数据的整合,建立箱形图,明确危险性等级为21700 >;18650 non-LiFePO4 (LFP) > 26650 LFP >;14500非lfp >;18650 LFP >;14500年联赛。在所有类型的圆柱形锂离子电池中,21700表现出最差的后果,这是由于采用了高能量密度的LiNi0.8Co0.15Al0.05O2 (NCA)和LiNixMnyCozO2 (NMC)正极材料。发现临界温度Tcr与最高温度广泛分散;最大自热速率(dT/ dT)和压力数据在文献中大多缺失。对开始温度、临界温度、触发温度和可能引起严重热失控的热源的定义进行了收集,发现差异之大令人难以想象。建立热分析数据库,将临界温度分为高Tcr(180℃以上)、低Tcr(130 ~ 180℃)和无Tcr。推测低Tcr的诱因为分离器熔化后的气体冲击或电子击穿,而Tcr的内在特性有待进一步研究。圆柱的热失控的特征库可以简明地归类为最低Tonset 88.0°C (21700 NMC)和最高Tonset 220.0°C(18650锂离子),最高(dT / dT)马克斯64536.0°C最低为1 21700 (NCA)与最低(dT / dT)马克斯3.0°C最低为1(18650锂离子),最高的达峰时间为1257.9°C (21700 NCA)最低和最高温度243.2°C(18650锂离子),最高Δn 314.0更易与18650年(NCA)与最低Δn 23.3更易(14500年联赛,Tcr最低145.5°C (21700 NCA)和(Tcr)(14500年和18650年联赛),最高ΔH为70.5 kJ (21700 NCA),最低ΔH为0.8 kJ (14500 LFP)。本文对目前的研究进行了综述,并对未来的研究方向进行了展望。本文综述了圆柱电池在热失效和热滥用下的关键特性,为解决下一代锂离子电池的本质安全问题提供了参考。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Comparison on Thermal Runaway and Critical Characteristics of Cylindrical Lithium-Ion Batteries: A Review

Comparison on Thermal Runaway and Critical Characteristics of Cylindrical Lithium-Ion Batteries: A Review

The thermal hazard results of commercial cylindrical lithium-ion batteries (LIBs) of different sizes from international laboratories are reviewed and discussed. The four types discussed encompass 14500, 18650, 21700, and 26650 ones. Characteristic data from the calorimeter include onset temperature, critical temperature, maximum temperature, maximum self-heat rate, enthalpy change, and quantity of noncondensable gases. By integrating thermal hazard data, a box-plot was established and hazard ranking was clearly evaluated as 21700 > 18650 non-LiFePO4 (LFP) ≫ 26650 LFP > 14500 non-LFP > 18650 LFP > 14500 LFP. Among all types of cylindrical lithium-ion batteries, the 21700 exhibits the worst consequence, which is attributed to the adoption of high energy density LiNi0.8Co0.15Al0.05O2 (NCA) and LiNixMnyCozO2 (NMC) cathode materials. It was found that the critical temperature Tcr and maximum temperature broadly scattered; besides, most of the maximum self-heat rate (dT/dt) and pressure data were absent in literature. Definitions of onset temperature, critical temperature, trigger temperature, and possible heat sources to stimulate the severe thermal runaway were collected and found to be unimaginably divergent. A thermal analysis database was established to classify critical temperatures into high Tcr (above 180 °C), low Tcr (130–180 °C), and no Tcr. The low Tcr inducement is speculated to be caused by gas shock or electron breakdown after the separator melted, while the intrinsic characteristics of Tcr require further investigation. Thermal runaway features of cylindrical LIBs can be concisely classified as lowest Tonset of 88.0 °C (21700 NMC) vs highest Tonset of 220.0 °C (18650 LFP), highest (dT/dt)max of 64536.0 °C min–1 (21700 NCA) vs lowest (dT/dt)max of 3.0 °C min–1 (18650 LFP), highest Tmax of 1257.9 °C (21700 NCA) vs lowest Tmax of 243.2 °C (18650 LFP), highest Δn of 314.0 mmol (18650 NCA) vs lowest Δn of 23.3 mmol (14500 LFP), lowest Tcr of 145.5 °C (21700 NCA) vs (no Tcr) (14500 and 18650 LFP), and highest ΔH of 70.5 kJ (21700 NCA) vs lowest ΔH of 0.8 kJ (14500 LFP). In this work, the present research is reviewed in detail and future perspectives are proposed. This review on the critical characteristics of cylindrical batteries under thermal failure and thermal abuse provides a reference for solving intrinsic safety issues for lithium-ion batteries of the next generation.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
4.20
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信