线性非齐次中性受电弓方程的全几何网格变系数BDF方法

IF 3.5 2区 数学 Q1 MATHEMATICS, APPLIED
Zhixiang Jin , Chengjian Zhang
{"title":"线性非齐次中性受电弓方程的全几何网格变系数BDF方法","authors":"Zhixiang Jin ,&nbsp;Chengjian Zhang","doi":"10.1016/j.amc.2025.129412","DOIUrl":null,"url":null,"abstract":"<div><div>This paper deals with numerical computation and analysis for the initial value problems (IVPs) of linear nonhomogeneous neutral pantograph equations. For solving this kind of IVPs, a class of extended <em>k</em>-step variable-coefficient backward differentiation formula (BDF) methods with fully-geometric grid are constructed. It is proved under the suitable conditions that an extended <em>k</em>-step variable-coefficient BDF method can arrive at <em>k</em>-order accuracy and is asymptotically stable. With a series of numerical experiments, the computational effectiveness and theoretical results of the presented methods are further confirmed.</div></div>","PeriodicalId":55496,"journal":{"name":"Applied Mathematics and Computation","volume":"499 ","pages":"Article 129412"},"PeriodicalIF":3.5000,"publicationDate":"2025-03-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Variable-coefficient BDF methods with fully-geometric grid for linear nonhomogeneous neutral pantograph equations\",\"authors\":\"Zhixiang Jin ,&nbsp;Chengjian Zhang\",\"doi\":\"10.1016/j.amc.2025.129412\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>This paper deals with numerical computation and analysis for the initial value problems (IVPs) of linear nonhomogeneous neutral pantograph equations. For solving this kind of IVPs, a class of extended <em>k</em>-step variable-coefficient backward differentiation formula (BDF) methods with fully-geometric grid are constructed. It is proved under the suitable conditions that an extended <em>k</em>-step variable-coefficient BDF method can arrive at <em>k</em>-order accuracy and is asymptotically stable. With a series of numerical experiments, the computational effectiveness and theoretical results of the presented methods are further confirmed.</div></div>\",\"PeriodicalId\":55496,\"journal\":{\"name\":\"Applied Mathematics and Computation\",\"volume\":\"499 \",\"pages\":\"Article 129412\"},\"PeriodicalIF\":3.5000,\"publicationDate\":\"2025-03-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applied Mathematics and Computation\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0096300325001390\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Mathematics and Computation","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0096300325001390","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

本文对线性非齐次中性受电弓方程初值问题进行了数值计算和分析。为了求解这类问题,构造了一类具有全几何网格的扩展k步变系数后向微分公式(BDF)方法。在适当的条件下,证明了扩展的k阶变系数BDF方法可以达到k阶精度,并且是渐近稳定的。通过一系列数值实验,进一步验证了所提方法的计算有效性和理论结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Variable-coefficient BDF methods with fully-geometric grid for linear nonhomogeneous neutral pantograph equations
This paper deals with numerical computation and analysis for the initial value problems (IVPs) of linear nonhomogeneous neutral pantograph equations. For solving this kind of IVPs, a class of extended k-step variable-coefficient backward differentiation formula (BDF) methods with fully-geometric grid are constructed. It is proved under the suitable conditions that an extended k-step variable-coefficient BDF method can arrive at k-order accuracy and is asymptotically stable. With a series of numerical experiments, the computational effectiveness and theoretical results of the presented methods are further confirmed.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
7.90
自引率
10.00%
发文量
755
审稿时长
36 days
期刊介绍: Applied Mathematics and Computation addresses work at the interface between applied mathematics, numerical computation, and applications of systems – oriented ideas to the physical, biological, social, and behavioral sciences, and emphasizes papers of a computational nature focusing on new algorithms, their analysis and numerical results. In addition to presenting research papers, Applied Mathematics and Computation publishes review articles and single–topics issues.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信