纳维-斯托克斯方程的正规化定向无边界条件:分析和数值研究

IF 3.5 2区 数学 Q1 MATHEMATICS, APPLIED
Pedro Nogueira, Ana L. Silvestre
{"title":"纳维-斯托克斯方程的正规化定向无边界条件:分析和数值研究","authors":"Pedro Nogueira,&nbsp;Ana L. Silvestre","doi":"10.1016/j.amc.2025.129398","DOIUrl":null,"url":null,"abstract":"<div><div>We consider the steady 2D and 3D Navier-Stokes equations with homogeneous mixed boundary conditions and the action of an external force. The classical do-nothing (CDN) boundary condition is replaced by a regularized directional do-nothing (RDDN) condition which depends on a parameter <span><math><mn>0</mn><mo>&lt;</mo><mi>δ</mi><mo>≪</mo><mn>1</mn></math></span>. After establishing the well-posedness of the Navier-Stokes equations with RDDN condition, we prove the convergence, as <span><math><mi>δ</mi><mo>→</mo><mn>0</mn></math></span>, to the solution of the Navier-Stokes equations with directional do-nothing (DDN) condition. The use of the RDDN condition in comparison with the CDN and DDN conditions is illustrated with 2D numerical simulations. The theoretical convergence result as <span><math><mi>δ</mi><mo>→</mo><mn>0</mn></math></span> is also confirmed by our numerical results.</div></div>","PeriodicalId":55496,"journal":{"name":"Applied Mathematics and Computation","volume":"499 ","pages":"Article 129398"},"PeriodicalIF":3.5000,"publicationDate":"2025-03-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Regularized directional do-nothing boundary conditions for the Navier-Stokes equations: Analytical and numerical study\",\"authors\":\"Pedro Nogueira,&nbsp;Ana L. Silvestre\",\"doi\":\"10.1016/j.amc.2025.129398\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>We consider the steady 2D and 3D Navier-Stokes equations with homogeneous mixed boundary conditions and the action of an external force. The classical do-nothing (CDN) boundary condition is replaced by a regularized directional do-nothing (RDDN) condition which depends on a parameter <span><math><mn>0</mn><mo>&lt;</mo><mi>δ</mi><mo>≪</mo><mn>1</mn></math></span>. After establishing the well-posedness of the Navier-Stokes equations with RDDN condition, we prove the convergence, as <span><math><mi>δ</mi><mo>→</mo><mn>0</mn></math></span>, to the solution of the Navier-Stokes equations with directional do-nothing (DDN) condition. The use of the RDDN condition in comparison with the CDN and DDN conditions is illustrated with 2D numerical simulations. The theoretical convergence result as <span><math><mi>δ</mi><mo>→</mo><mn>0</mn></math></span> is also confirmed by our numerical results.</div></div>\",\"PeriodicalId\":55496,\"journal\":{\"name\":\"Applied Mathematics and Computation\",\"volume\":\"499 \",\"pages\":\"Article 129398\"},\"PeriodicalIF\":3.5000,\"publicationDate\":\"2025-03-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applied Mathematics and Computation\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0096300325001250\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Mathematics and Computation","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0096300325001250","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

考虑具有均匀混合边界条件和外力作用的二维和三维稳定Navier-Stokes方程。经典的无操作(CDN)边界条件被正则化的定向无操作(RDDN)条件所取代,该条件取决于参数0<;δ≪1。在建立了具有RDDN条件的Navier-Stokes方程的适定性之后,证明了具有定向无行为(DDN)条件的Navier-Stokes方程的解具有δ→0的收敛性。通过二维数值模拟说明了RDDN条件与CDN和DDN条件的比较。当δ→0时的理论收敛结果也得到了数值结果的证实。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Regularized directional do-nothing boundary conditions for the Navier-Stokes equations: Analytical and numerical study
We consider the steady 2D and 3D Navier-Stokes equations with homogeneous mixed boundary conditions and the action of an external force. The classical do-nothing (CDN) boundary condition is replaced by a regularized directional do-nothing (RDDN) condition which depends on a parameter 0<δ1. After establishing the well-posedness of the Navier-Stokes equations with RDDN condition, we prove the convergence, as δ0, to the solution of the Navier-Stokes equations with directional do-nothing (DDN) condition. The use of the RDDN condition in comparison with the CDN and DDN conditions is illustrated with 2D numerical simulations. The theoretical convergence result as δ0 is also confirmed by our numerical results.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
7.90
自引率
10.00%
发文量
755
审稿时长
36 days
期刊介绍: Applied Mathematics and Computation addresses work at the interface between applied mathematics, numerical computation, and applications of systems – oriented ideas to the physical, biological, social, and behavioral sciences, and emphasizes papers of a computational nature focusing on new algorithms, their analysis and numerical results. In addition to presenting research papers, Applied Mathematics and Computation publishes review articles and single–topics issues.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信