具有对数正态Ornstein-Uhlenbeck过程的SIQRS流行病随机模型的渐近稳定性

IF 2.9 2区 数学 Q1 MATHEMATICS, APPLIED
Xiao Li, Qun Liu
{"title":"具有对数正态Ornstein-Uhlenbeck过程的SIQRS流行病随机模型的渐近稳定性","authors":"Xiao Li,&nbsp;Qun Liu","doi":"10.1016/j.aml.2025.109551","DOIUrl":null,"url":null,"abstract":"<div><div>In this work, we propose and analyze a stochastic SIQRS epidemic model with the disease transmission rate driven by a log-normal Ornstein–Uhlenbeck process. By establishing a series of Lyapunov functions, we derive sufficient criteria for the asymptotical stability of the positive equilibrium of the system which suggests the prevalence of the disease in the long term. This work provides a basis for taking measures to control the disease dynamics.</div></div>","PeriodicalId":55497,"journal":{"name":"Applied Mathematics Letters","volume":"166 ","pages":"Article 109551"},"PeriodicalIF":2.9000,"publicationDate":"2025-03-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Asymptotical stability of a stochastic SIQRS epidemic model with log-normal Ornstein–Uhlenbeck process\",\"authors\":\"Xiao Li,&nbsp;Qun Liu\",\"doi\":\"10.1016/j.aml.2025.109551\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>In this work, we propose and analyze a stochastic SIQRS epidemic model with the disease transmission rate driven by a log-normal Ornstein–Uhlenbeck process. By establishing a series of Lyapunov functions, we derive sufficient criteria for the asymptotical stability of the positive equilibrium of the system which suggests the prevalence of the disease in the long term. This work provides a basis for taking measures to control the disease dynamics.</div></div>\",\"PeriodicalId\":55497,\"journal\":{\"name\":\"Applied Mathematics Letters\",\"volume\":\"166 \",\"pages\":\"Article 109551\"},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2025-03-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applied Mathematics Letters\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0893965925001016\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Mathematics Letters","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0893965925001016","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

在这项工作中,我们提出并分析了一个疾病传播率由对数正态Ornstein-Uhlenbeck过程驱动的SIQRS随机流行模型。通过建立一系列Lyapunov函数,我们得到了系统正平衡渐近稳定性的充分判据,这表明疾病在长期内的流行。这项工作为采取措施控制疾病动态提供了依据。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Asymptotical stability of a stochastic SIQRS epidemic model with log-normal Ornstein–Uhlenbeck process
In this work, we propose and analyze a stochastic SIQRS epidemic model with the disease transmission rate driven by a log-normal Ornstein–Uhlenbeck process. By establishing a series of Lyapunov functions, we derive sufficient criteria for the asymptotical stability of the positive equilibrium of the system which suggests the prevalence of the disease in the long term. This work provides a basis for taking measures to control the disease dynamics.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Applied Mathematics Letters
Applied Mathematics Letters 数学-应用数学
CiteScore
7.70
自引率
5.40%
发文量
347
审稿时长
10 days
期刊介绍: The purpose of Applied Mathematics Letters is to provide a means of rapid publication for important but brief applied mathematical papers. The brief descriptions of any work involving a novel application or utilization of mathematics, or a development in the methodology of applied mathematics is a potential contribution for this journal. This journal''s focus is on applied mathematics topics based on differential equations and linear algebra. Priority will be given to submissions that are likely to appeal to a wide audience.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信