将裂缝地层学约束纳入立体反问题的DFN建模

IF 6.9 1区 工程技术 Q1 ENGINEERING, GEOLOGICAL
Renato R.S. Dantas , Walter E. Medeiros , João V.F. Pereira
{"title":"将裂缝地层学约束纳入立体反问题的DFN建模","authors":"Renato R.S. Dantas ,&nbsp;Walter E. Medeiros ,&nbsp;João V.F. Pereira","doi":"10.1016/j.enggeo.2025.107993","DOIUrl":null,"url":null,"abstract":"<div><div>We develop a methodology for building stochastic discrete fracture networks (DFNs) based on the solution of a generalized version of the stereology inverse problem incorporating constraints derived from fracture stratigraphy. The DFN is simulated inside a layer-cake model, whose interfaces conform to the available fracture stratigraphy information. For each layer, estimates of the power law exponent of fracture sizes and volumetric fracture intensity (<span><math><msub><mrow><mi>P</mi></mrow><mrow><mn>32</mn></mrow></msub></math></span>) are obtained for each fracture set from the solution of the inverse problem; the inputs are trace length distribution and areal fracture intensities (<span><math><msub><mrow><mi>P</mi></mrow><mrow><mn>21</mn></mrow></msub></math></span>) measured on multiple exposed surfaces. A Lagrangian formulation of the inverse problem allows the straightforward incorporation of geological constraints. However, the price to pay is having to solve the problem with global optimization methods; here we use a particle swarm optimization algorithm. Our approach is applied in a real cave setting, where multiple surfaces expose fracture traces. Using a simplified geometry of the cave setting, we obtain solutions honoring both synthetic and field measurements. Uncertainties in the <span><math><msub><mrow><mi>P</mi></mrow><mrow><mn>32</mn></mrow></msub></math></span> estimates might be different for each layer, depending on the fracture intensity contrasts between the layers and on the angles between the exposed surfaces and the fracture planes. The interpreter can then evaluate the reliability of the parameter estimates obtained with the layer-cake model in comparison with those obtained with a homogeneous version of the investigated volume. In addition, we show that the <span><math><msub><mrow><mi>P</mi></mrow><mrow><mn>32</mn></mrow></msub></math></span> estimates depend on the shape assumed for the fractures, being larger for rectangle-shaped fractures than for disk-shaped fractures.</div></div>","PeriodicalId":11567,"journal":{"name":"Engineering Geology","volume":"351 ","pages":"Article 107993"},"PeriodicalIF":6.9000,"publicationDate":"2025-03-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"DFN modeling incorporating fracture stratigraphy constraints into the stereology inverse problem\",\"authors\":\"Renato R.S. Dantas ,&nbsp;Walter E. Medeiros ,&nbsp;João V.F. Pereira\",\"doi\":\"10.1016/j.enggeo.2025.107993\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>We develop a methodology for building stochastic discrete fracture networks (DFNs) based on the solution of a generalized version of the stereology inverse problem incorporating constraints derived from fracture stratigraphy. The DFN is simulated inside a layer-cake model, whose interfaces conform to the available fracture stratigraphy information. For each layer, estimates of the power law exponent of fracture sizes and volumetric fracture intensity (<span><math><msub><mrow><mi>P</mi></mrow><mrow><mn>32</mn></mrow></msub></math></span>) are obtained for each fracture set from the solution of the inverse problem; the inputs are trace length distribution and areal fracture intensities (<span><math><msub><mrow><mi>P</mi></mrow><mrow><mn>21</mn></mrow></msub></math></span>) measured on multiple exposed surfaces. A Lagrangian formulation of the inverse problem allows the straightforward incorporation of geological constraints. However, the price to pay is having to solve the problem with global optimization methods; here we use a particle swarm optimization algorithm. Our approach is applied in a real cave setting, where multiple surfaces expose fracture traces. Using a simplified geometry of the cave setting, we obtain solutions honoring both synthetic and field measurements. Uncertainties in the <span><math><msub><mrow><mi>P</mi></mrow><mrow><mn>32</mn></mrow></msub></math></span> estimates might be different for each layer, depending on the fracture intensity contrasts between the layers and on the angles between the exposed surfaces and the fracture planes. The interpreter can then evaluate the reliability of the parameter estimates obtained with the layer-cake model in comparison with those obtained with a homogeneous version of the investigated volume. In addition, we show that the <span><math><msub><mrow><mi>P</mi></mrow><mrow><mn>32</mn></mrow></msub></math></span> estimates depend on the shape assumed for the fractures, being larger for rectangle-shaped fractures than for disk-shaped fractures.</div></div>\",\"PeriodicalId\":11567,\"journal\":{\"name\":\"Engineering Geology\",\"volume\":\"351 \",\"pages\":\"Article 107993\"},\"PeriodicalIF\":6.9000,\"publicationDate\":\"2025-03-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Engineering Geology\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0013795225000894\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, GEOLOGICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Engineering Geology","FirstCategoryId":"89","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0013795225000894","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, GEOLOGICAL","Score":null,"Total":0}
引用次数: 0

摘要

我们开发了一种建立随机离散裂缝网络(DFNs)的方法,该方法基于包含裂缝地层学约束的立体反问题的广义解。在层饼模型中模拟DFN,其界面符合现有的裂缝地层信息。对于每一层,由反问题的解得到每个裂缝集的裂缝尺寸和体积断裂强度的幂律指数(P32)的估计;输入是在多个暴露表面上测量的痕迹长度分布和面断裂强度(P21)。反问题的拉格朗日公式允许直接结合地质约束。然而,要付出的代价是必须用全局优化方法来解决问题;这里我们使用粒子群优化算法。我们的方法应用于真实的洞穴环境中,其中多个表面暴露出裂缝痕迹。利用简化的几何形状的洞穴设置,我们得到了解决方案,同时考虑了合成和现场测量。每一层的P32估计的不确定性可能不同,这取决于层之间的断裂强度对比以及暴露表面与断裂面之间的角度。然后,解释器可以评估用层饼模型获得的参数估计的可靠性,并将其与用研究体积的均匀版本获得的参数估计进行比较。此外,我们表明P32的估计取决于假设的裂缝形状,矩形裂缝比盘状裂缝更大。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
DFN modeling incorporating fracture stratigraphy constraints into the stereology inverse problem
We develop a methodology for building stochastic discrete fracture networks (DFNs) based on the solution of a generalized version of the stereology inverse problem incorporating constraints derived from fracture stratigraphy. The DFN is simulated inside a layer-cake model, whose interfaces conform to the available fracture stratigraphy information. For each layer, estimates of the power law exponent of fracture sizes and volumetric fracture intensity (P32) are obtained for each fracture set from the solution of the inverse problem; the inputs are trace length distribution and areal fracture intensities (P21) measured on multiple exposed surfaces. A Lagrangian formulation of the inverse problem allows the straightforward incorporation of geological constraints. However, the price to pay is having to solve the problem with global optimization methods; here we use a particle swarm optimization algorithm. Our approach is applied in a real cave setting, where multiple surfaces expose fracture traces. Using a simplified geometry of the cave setting, we obtain solutions honoring both synthetic and field measurements. Uncertainties in the P32 estimates might be different for each layer, depending on the fracture intensity contrasts between the layers and on the angles between the exposed surfaces and the fracture planes. The interpreter can then evaluate the reliability of the parameter estimates obtained with the layer-cake model in comparison with those obtained with a homogeneous version of the investigated volume. In addition, we show that the P32 estimates depend on the shape assumed for the fractures, being larger for rectangle-shaped fractures than for disk-shaped fractures.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Engineering Geology
Engineering Geology 地学-地球科学综合
CiteScore
13.70
自引率
12.20%
发文量
327
审稿时长
5.6 months
期刊介绍: Engineering Geology, an international interdisciplinary journal, serves as a bridge between earth sciences and engineering, focusing on geological and geotechnical engineering. It welcomes studies with relevance to engineering, environmental concerns, and safety, catering to engineering geologists with backgrounds in geology or civil/mining engineering. Topics include applied geomorphology, structural geology, geophysics, geochemistry, environmental geology, hydrogeology, land use planning, natural hazards, remote sensing, soil and rock mechanics, and applied geotechnical engineering. The journal provides a platform for research at the intersection of geology and engineering disciplines.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信