用热力学模型和微观力学方法量化ASR膨胀中的结晶压力

IF 10.9 1区 工程技术 Q1 CONSTRUCTION & BUILDING TECHNOLOGY
Syrine Razki , Farid Benboudjema , Alexandra Bourdot , Sylvain Langlois , Amélie Fau , Fikri Hafid , Tulio Honorio
{"title":"用热力学模型和微观力学方法量化ASR膨胀中的结晶压力","authors":"Syrine Razki ,&nbsp;Farid Benboudjema ,&nbsp;Alexandra Bourdot ,&nbsp;Sylvain Langlois ,&nbsp;Amélie Fau ,&nbsp;Fikri Hafid ,&nbsp;Tulio Honorio","doi":"10.1016/j.cemconres.2025.107878","DOIUrl":null,"url":null,"abstract":"<div><div>Establishing direct relations between alkali-silica reaction (ASR) expansion, crystallization pressure build-up, and phase assemblage changes is a critical step towards predictive modeling of ASR damage. To address this, we propose a strategy that combines thermodynamic modeling with micromechanics. First, we complete the thermodynamic database for ASR products, including nanocrystalline ASR-P1 data and improving the previous data for crystalline products. Phase assemblage is determined by accounting for cement hydration and amorphous silica dissolution kinetics. Crystallization pressure estimates are provided based on pore solution supersaturation with respect to ASR products. These phase assemblage and crystallization pressure estimates are then used as input for analytical micromechanical estimates of elastic properties degradation and macroscopic expansion. The model strategy that integrates damage considerations and the gel-like nature of ASR-P1 provides a better comparison with experimental results.</div></div>","PeriodicalId":266,"journal":{"name":"Cement and Concrete Research","volume":"193 ","pages":"Article 107878"},"PeriodicalIF":10.9000,"publicationDate":"2025-03-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Crystallization pressure in ASR expansion quantified by thermodynamic modeling and micromechanics\",\"authors\":\"Syrine Razki ,&nbsp;Farid Benboudjema ,&nbsp;Alexandra Bourdot ,&nbsp;Sylvain Langlois ,&nbsp;Amélie Fau ,&nbsp;Fikri Hafid ,&nbsp;Tulio Honorio\",\"doi\":\"10.1016/j.cemconres.2025.107878\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Establishing direct relations between alkali-silica reaction (ASR) expansion, crystallization pressure build-up, and phase assemblage changes is a critical step towards predictive modeling of ASR damage. To address this, we propose a strategy that combines thermodynamic modeling with micromechanics. First, we complete the thermodynamic database for ASR products, including nanocrystalline ASR-P1 data and improving the previous data for crystalline products. Phase assemblage is determined by accounting for cement hydration and amorphous silica dissolution kinetics. Crystallization pressure estimates are provided based on pore solution supersaturation with respect to ASR products. These phase assemblage and crystallization pressure estimates are then used as input for analytical micromechanical estimates of elastic properties degradation and macroscopic expansion. The model strategy that integrates damage considerations and the gel-like nature of ASR-P1 provides a better comparison with experimental results.</div></div>\",\"PeriodicalId\":266,\"journal\":{\"name\":\"Cement and Concrete Research\",\"volume\":\"193 \",\"pages\":\"Article 107878\"},\"PeriodicalIF\":10.9000,\"publicationDate\":\"2025-03-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cement and Concrete Research\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0008884625000973\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CONSTRUCTION & BUILDING TECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cement and Concrete Research","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0008884625000973","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CONSTRUCTION & BUILDING TECHNOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

建立碱-硅反应(ASR)膨胀、结晶压力积累和相组合变化之间的直接关系是建立ASR损伤预测模型的关键一步。为了解决这个问题,我们提出了一种将热力学建模与微观力学相结合的策略。首先,我们完成了ASR产物的热力学数据库,包括纳米晶ASR- p1数据,并改进了之前晶体产物的数据。相组合是通过计算水泥水化和非晶硅溶解动力学来确定的。结晶压力估计是基于相对于ASR产品的孔隙溶液过饱和度提供的。然后将这些相组合和结晶压力估计用作弹性性能退化和宏观膨胀的分析微力学估计的输入。将损伤考虑因素和ASR-P1的凝胶性结合起来的模型策略可以更好地与实验结果进行比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Crystallization pressure in ASR expansion quantified by thermodynamic modeling and micromechanics
Establishing direct relations between alkali-silica reaction (ASR) expansion, crystallization pressure build-up, and phase assemblage changes is a critical step towards predictive modeling of ASR damage. To address this, we propose a strategy that combines thermodynamic modeling with micromechanics. First, we complete the thermodynamic database for ASR products, including nanocrystalline ASR-P1 data and improving the previous data for crystalline products. Phase assemblage is determined by accounting for cement hydration and amorphous silica dissolution kinetics. Crystallization pressure estimates are provided based on pore solution supersaturation with respect to ASR products. These phase assemblage and crystallization pressure estimates are then used as input for analytical micromechanical estimates of elastic properties degradation and macroscopic expansion. The model strategy that integrates damage considerations and the gel-like nature of ASR-P1 provides a better comparison with experimental results.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Cement and Concrete Research
Cement and Concrete Research 工程技术-材料科学:综合
CiteScore
20.90
自引率
12.30%
发文量
318
审稿时长
53 days
期刊介绍: Cement and Concrete Research is dedicated to publishing top-notch research on the materials science and engineering of cement, cement composites, mortars, concrete, and related materials incorporating cement or other mineral binders. The journal prioritizes reporting significant findings in research on the properties and performance of cementitious materials. It also covers novel experimental techniques, the latest analytical and modeling methods, examination and diagnosis of actual cement and concrete structures, and the exploration of potential improvements in materials.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信