Priyanka Pal, Sudip Kumar Ghosh, Sayanta Mondal, Tushar Kanti Maiti
{"title":"川大肠杆菌DGI-2对铅(Pb2+)的吸附和富集效率:生物修复等温线、动力学和机理研究","authors":"Priyanka Pal, Sudip Kumar Ghosh, Sayanta Mondal, Tushar Kanti Maiti","doi":"10.1016/j.jhazmat.2025.138017","DOIUrl":null,"url":null,"abstract":"<div><div>Heavy metal (HM) contamination, particularly lead (Pb²⁺), threatens environmental and agricultural sustainability, necessitating effective remediation strategies. This study evaluates the Pb²⁺ sequestration potential of <em>Enterobacter chuandaensis</em> DGI-2, an HM-tolerant rhizobacterium isolated from a Pb-contaminated rhizosphere. DGI-2 exhibited high Pb²⁺ removal efficiency, achieving 94.73 % removal at 100 µg/mL and 69.09 % at 750 µg/mL over 96 h, primarily through cell surface and exopolysaccharide (EPS) adsorption. Biosorption studies demonstrated higher Pb²⁺ uptake in living biomass (102.95 mg/g, 68.63 %) than in dead biomass (98.61 mg/g, 65.74 %) under controlled conditions (0.5 g/L biomass, pH-6.5, 720 min). Mechanistic analyses revealed that Pb²⁺ adsorption primarily involved interactions with –OH, –COOH, and –PO₄³ ⁻ functional groups, facilitated by multilayer sorption, complexation, and ion exchange. Moreover, a 210.66 % increase in phosphatase activity promoted Pb²⁺ precipitation, forming stable Pb-phosphate minerals (e.g., Pb₅(PO₄)₃Cl, Pb₁₀(PO₄)₆(OH)₂), as confirmed by X-ray diffraction (XRD), significantly contributing to Pb sequestration. Regeneration studies demonstrated the biomass' reusability over four cycles. Soil microcosm experiments showed an 11.7–13.1 % reduction in bioavailable Pb, with greater stabilization in non-sterile soils, suggesting synergistic effects with native microbiota. Additionally, DGI-2 exhibited plant growth-promoting (PGP) traits, reducing phytotoxicity, enhancing soil health and phytostabilization potential, positioning it as a sustainable biosorbent for Pb²⁺ remediation.</div></div>","PeriodicalId":361,"journal":{"name":"Journal of Hazardous Materials","volume":"492 ","pages":"Article 138017"},"PeriodicalIF":11.3000,"publicationDate":"2025-03-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Lead (Pb2+) biosorption and bioaccumulation efficiency of Enterobacter chuandaensis DGI-2: Isotherm, kinetics and mechanistic study for bioremediation\",\"authors\":\"Priyanka Pal, Sudip Kumar Ghosh, Sayanta Mondal, Tushar Kanti Maiti\",\"doi\":\"10.1016/j.jhazmat.2025.138017\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Heavy metal (HM) contamination, particularly lead (Pb²⁺), threatens environmental and agricultural sustainability, necessitating effective remediation strategies. This study evaluates the Pb²⁺ sequestration potential of <em>Enterobacter chuandaensis</em> DGI-2, an HM-tolerant rhizobacterium isolated from a Pb-contaminated rhizosphere. DGI-2 exhibited high Pb²⁺ removal efficiency, achieving 94.73 % removal at 100 µg/mL and 69.09 % at 750 µg/mL over 96 h, primarily through cell surface and exopolysaccharide (EPS) adsorption. Biosorption studies demonstrated higher Pb²⁺ uptake in living biomass (102.95 mg/g, 68.63 %) than in dead biomass (98.61 mg/g, 65.74 %) under controlled conditions (0.5 g/L biomass, pH-6.5, 720 min). Mechanistic analyses revealed that Pb²⁺ adsorption primarily involved interactions with –OH, –COOH, and –PO₄³ ⁻ functional groups, facilitated by multilayer sorption, complexation, and ion exchange. Moreover, a 210.66 % increase in phosphatase activity promoted Pb²⁺ precipitation, forming stable Pb-phosphate minerals (e.g., Pb₅(PO₄)₃Cl, Pb₁₀(PO₄)₆(OH)₂), as confirmed by X-ray diffraction (XRD), significantly contributing to Pb sequestration. Regeneration studies demonstrated the biomass' reusability over four cycles. Soil microcosm experiments showed an 11.7–13.1 % reduction in bioavailable Pb, with greater stabilization in non-sterile soils, suggesting synergistic effects with native microbiota. Additionally, DGI-2 exhibited plant growth-promoting (PGP) traits, reducing phytotoxicity, enhancing soil health and phytostabilization potential, positioning it as a sustainable biosorbent for Pb²⁺ remediation.</div></div>\",\"PeriodicalId\":361,\"journal\":{\"name\":\"Journal of Hazardous Materials\",\"volume\":\"492 \",\"pages\":\"Article 138017\"},\"PeriodicalIF\":11.3000,\"publicationDate\":\"2025-03-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Hazardous Materials\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0304389425009331\",\"RegionNum\":1,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, ENVIRONMENTAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Hazardous Materials","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0304389425009331","RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ENVIRONMENTAL","Score":null,"Total":0}
Lead (Pb2+) biosorption and bioaccumulation efficiency of Enterobacter chuandaensis DGI-2: Isotherm, kinetics and mechanistic study for bioremediation
Heavy metal (HM) contamination, particularly lead (Pb²⁺), threatens environmental and agricultural sustainability, necessitating effective remediation strategies. This study evaluates the Pb²⁺ sequestration potential of Enterobacter chuandaensis DGI-2, an HM-tolerant rhizobacterium isolated from a Pb-contaminated rhizosphere. DGI-2 exhibited high Pb²⁺ removal efficiency, achieving 94.73 % removal at 100 µg/mL and 69.09 % at 750 µg/mL over 96 h, primarily through cell surface and exopolysaccharide (EPS) adsorption. Biosorption studies demonstrated higher Pb²⁺ uptake in living biomass (102.95 mg/g, 68.63 %) than in dead biomass (98.61 mg/g, 65.74 %) under controlled conditions (0.5 g/L biomass, pH-6.5, 720 min). Mechanistic analyses revealed that Pb²⁺ adsorption primarily involved interactions with –OH, –COOH, and –PO₄³ ⁻ functional groups, facilitated by multilayer sorption, complexation, and ion exchange. Moreover, a 210.66 % increase in phosphatase activity promoted Pb²⁺ precipitation, forming stable Pb-phosphate minerals (e.g., Pb₅(PO₄)₃Cl, Pb₁₀(PO₄)₆(OH)₂), as confirmed by X-ray diffraction (XRD), significantly contributing to Pb sequestration. Regeneration studies demonstrated the biomass' reusability over four cycles. Soil microcosm experiments showed an 11.7–13.1 % reduction in bioavailable Pb, with greater stabilization in non-sterile soils, suggesting synergistic effects with native microbiota. Additionally, DGI-2 exhibited plant growth-promoting (PGP) traits, reducing phytotoxicity, enhancing soil health and phytostabilization potential, positioning it as a sustainable biosorbent for Pb²⁺ remediation.
期刊介绍:
The Journal of Hazardous Materials serves as a global platform for promoting cutting-edge research in the field of Environmental Science and Engineering. Our publication features a wide range of articles, including full-length research papers, review articles, and perspectives, with the aim of enhancing our understanding of the dangers and risks associated with various materials concerning public health and the environment. It is important to note that the term "environmental contaminants" refers specifically to substances that pose hazardous effects through contamination, while excluding those that do not have such impacts on the environment or human health. Moreover, we emphasize the distinction between wastes and hazardous materials in order to provide further clarity on the scope of the journal. We have a keen interest in exploring specific compounds and microbial agents that have adverse effects on the environment.