用于高性能锌-空气充电电池的光辅助电子驱动 g-C3N4/NSs 阴极催化剂

IF 18.9 1区 材料科学 Q1 CHEMISTRY, PHYSICAL
Shenglin He, Shulin Gao, Sujuan Hu
{"title":"用于高性能锌-空气充电电池的光辅助电子驱动 g-C3N4/NSs 阴极催化剂","authors":"Shenglin He,&nbsp;Shulin Gao,&nbsp;Sujuan Hu","doi":"10.1016/j.ensm.2025.104194","DOIUrl":null,"url":null,"abstract":"<div><div>The sluggish multi-electron transfer kinetics of oxygen reduction and evolution reactions (ORR and OER) on the air cathode significantly reduce the energy efficiency of rechargeable zinc-air batteries (RZABs). Light-assistance is an effective approach to enhance the cathode reaction rate. However, the critical scientific issue of how photogenerated electrons regulate the interfacial electronic structure and thereby influence the behavior of reaction intermediates remains unclear, posing a challenge to achieving high-performance light-assisted RZABs. This study employs delocalized electron-rich g-C<sub>3</sub>N<sub>4</sub>/NSs as a model material and applies <em>in-situ</em> electron paramagnetic resonance (EPR) and theoretical calculations to elucidate this issue. Under light assistance, delocalized electrons from g-C<sub>3</sub>N<sub>4</sub>/NSs alter the surface electron distribution and charge density, reducing O<sub>2</sub> adsorption energy and the energy barriers of key intermediate steps, thereby markedly enhancing the adsorption and desorption behavior of O<sub>2</sub> and key intermediates (OH*). As a result, the constructed light-assisted aqueous RZABs demonstrate a high energy density of 1020 mWh g<sup>-1</sup> and exhibit excellent cycling stability at a current density of 5 mA cm<sup>-2</sup> (cycle life of 1400 h, discharge voltage of 1.25 V, charge voltage of 2.0 V). Additionally, the developed light-assisted flexible RZABs (FRZABs) exhibit outstanding performance with excellent adaptability to extreme conditions.</div></div>","PeriodicalId":306,"journal":{"name":"Energy Storage Materials","volume":"77 ","pages":"Article 104194"},"PeriodicalIF":18.9000,"publicationDate":"2025-03-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Light-assisted delocalized electron-driven g-C3N4/NSs-based cathode catalysts for high-performance rechargeable zinc-air batteries\",\"authors\":\"Shenglin He,&nbsp;Shulin Gao,&nbsp;Sujuan Hu\",\"doi\":\"10.1016/j.ensm.2025.104194\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The sluggish multi-electron transfer kinetics of oxygen reduction and evolution reactions (ORR and OER) on the air cathode significantly reduce the energy efficiency of rechargeable zinc-air batteries (RZABs). Light-assistance is an effective approach to enhance the cathode reaction rate. However, the critical scientific issue of how photogenerated electrons regulate the interfacial electronic structure and thereby influence the behavior of reaction intermediates remains unclear, posing a challenge to achieving high-performance light-assisted RZABs. This study employs delocalized electron-rich g-C<sub>3</sub>N<sub>4</sub>/NSs as a model material and applies <em>in-situ</em> electron paramagnetic resonance (EPR) and theoretical calculations to elucidate this issue. Under light assistance, delocalized electrons from g-C<sub>3</sub>N<sub>4</sub>/NSs alter the surface electron distribution and charge density, reducing O<sub>2</sub> adsorption energy and the energy barriers of key intermediate steps, thereby markedly enhancing the adsorption and desorption behavior of O<sub>2</sub> and key intermediates (OH*). As a result, the constructed light-assisted aqueous RZABs demonstrate a high energy density of 1020 mWh g<sup>-1</sup> and exhibit excellent cycling stability at a current density of 5 mA cm<sup>-2</sup> (cycle life of 1400 h, discharge voltage of 1.25 V, charge voltage of 2.0 V). Additionally, the developed light-assisted flexible RZABs (FRZABs) exhibit outstanding performance with excellent adaptability to extreme conditions.</div></div>\",\"PeriodicalId\":306,\"journal\":{\"name\":\"Energy Storage Materials\",\"volume\":\"77 \",\"pages\":\"Article 104194\"},\"PeriodicalIF\":18.9000,\"publicationDate\":\"2025-03-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Energy Storage Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2405829725001941\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Energy Storage Materials","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2405829725001941","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

空气阴极上氧还原演化反应(ORR)和氧还原演化反应(OER)的多电子传递动力学缓慢,显著降低了可充电锌空气电池(RZABs)的能量效率。光辅助是提高阴极反应速率的有效途径。然而,关于光生电子如何调节界面电子结构从而影响反应中间体行为的关键科学问题仍不清楚,这对实现高性能光辅助RZABs提出了挑战。本研究采用离域富电子g-C3N4/NSs作为模型材料,运用原位电子顺磁共振(EPR)和理论计算来阐明这一问题。在光的作用下,g-C3N4/NSs的离域电子改变了O2的表面电子分布和电荷密度,降低了O2的吸附能和关键中间体(OH*)的能垒,从而显著增强了O2和关键中间体(OH*)的吸附和解吸行为。结果表明,制备的光辅助柔性RZABs具有1020 mWh g-1的高能量密度,在5 mA cm-2的电流密度下具有良好的循环稳定性(循环寿命1400 h,放电电压1.25 V,充电电压2.0 V),并且具有优异的性能,对极端条件具有良好的适应性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Light-assisted delocalized electron-driven g-C3N4/NSs-based cathode catalysts for high-performance rechargeable zinc-air batteries
The sluggish multi-electron transfer kinetics of oxygen reduction and evolution reactions (ORR and OER) on the air cathode significantly reduce the energy efficiency of rechargeable zinc-air batteries (RZABs). Light-assistance is an effective approach to enhance the cathode reaction rate. However, the critical scientific issue of how photogenerated electrons regulate the interfacial electronic structure and thereby influence the behavior of reaction intermediates remains unclear, posing a challenge to achieving high-performance light-assisted RZABs. This study employs delocalized electron-rich g-C3N4/NSs as a model material and applies in-situ electron paramagnetic resonance (EPR) and theoretical calculations to elucidate this issue. Under light assistance, delocalized electrons from g-C3N4/NSs alter the surface electron distribution and charge density, reducing O2 adsorption energy and the energy barriers of key intermediate steps, thereby markedly enhancing the adsorption and desorption behavior of O2 and key intermediates (OH*). As a result, the constructed light-assisted aqueous RZABs demonstrate a high energy density of 1020 mWh g-1 and exhibit excellent cycling stability at a current density of 5 mA cm-2 (cycle life of 1400 h, discharge voltage of 1.25 V, charge voltage of 2.0 V). Additionally, the developed light-assisted flexible RZABs (FRZABs) exhibit outstanding performance with excellent adaptability to extreme conditions.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Energy Storage Materials
Energy Storage Materials Materials Science-General Materials Science
CiteScore
33.00
自引率
5.90%
发文量
652
审稿时长
27 days
期刊介绍: Energy Storage Materials is a global interdisciplinary journal dedicated to sharing scientific and technological advancements in materials and devices for advanced energy storage and related energy conversion, such as in metal-O2 batteries. The journal features comprehensive research articles, including full papers and short communications, as well as authoritative feature articles and reviews by leading experts in the field. Energy Storage Materials covers a wide range of topics, including the synthesis, fabrication, structure, properties, performance, and technological applications of energy storage materials. Additionally, the journal explores strategies, policies, and developments in the field of energy storage materials and devices for sustainable energy. Published papers are selected based on their scientific and technological significance, their ability to provide valuable new knowledge, and their relevance to the international research community.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信