利用 DNN 模型从平面相机图像精确预测 SWRO 海水淡化过程中的生物膜厚度

IF 10.4 1区 工程技术 Q1 ENGINEERING, CHEMICAL
Henry J. Tanudjaja, Najat A. Amin, Adnan Qamar, Sarah Kerdi, Hussain Basamh, Thomas Altmann, Ratul Das, Noreddine Ghaffour
{"title":"利用 DNN 模型从平面相机图像精确预测 SWRO 海水淡化过程中的生物膜厚度","authors":"Henry J. Tanudjaja, Najat A. Amin, Adnan Qamar, Sarah Kerdi, Hussain Basamh, Thomas Altmann, Ratul Das, Noreddine Ghaffour","doi":"10.1038/s41545-025-00451-9","DOIUrl":null,"url":null,"abstract":"<p>Detecting and quantifying biofouling is a challenging process inside a seawater reverse osmosis (SWRO) module due to its design complexity and operating obstacles. Herein, deep Convolutional Neural Network (CNN) models were developed to accurately calculate the cross-sectional biofilm thickness (vertical plane) through membrane surface images (horizontal plane). Models took membrane surface image as input; the classification model (CNN-Class) predicted fouling classification, while the regression model (CNN-Reg) predicted the average biofilm thickness on the membrane surface. CNN-Class model showed 90% accuracy, and CNN-Reg reached a moderate mean difference of ±24% in predicting the classification and biofilm thickness, respectively. Both models performed well and validated with 80% accuracy in classification and a mean difference of ±18% in biofilm thickness prediction from a new set of unseen live OCT images. The developed CNN models are a novel technology that has the potential to be implemented in desalination plants for early decision-making and biofouling mitigation.</p>","PeriodicalId":19375,"journal":{"name":"npj Clean Water","volume":"13 1","pages":""},"PeriodicalIF":10.4000,"publicationDate":"2025-03-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Precise biofilm thickness prediction in SWRO desalination from planar camera images by DNN models\",\"authors\":\"Henry J. Tanudjaja, Najat A. Amin, Adnan Qamar, Sarah Kerdi, Hussain Basamh, Thomas Altmann, Ratul Das, Noreddine Ghaffour\",\"doi\":\"10.1038/s41545-025-00451-9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Detecting and quantifying biofouling is a challenging process inside a seawater reverse osmosis (SWRO) module due to its design complexity and operating obstacles. Herein, deep Convolutional Neural Network (CNN) models were developed to accurately calculate the cross-sectional biofilm thickness (vertical plane) through membrane surface images (horizontal plane). Models took membrane surface image as input; the classification model (CNN-Class) predicted fouling classification, while the regression model (CNN-Reg) predicted the average biofilm thickness on the membrane surface. CNN-Class model showed 90% accuracy, and CNN-Reg reached a moderate mean difference of ±24% in predicting the classification and biofilm thickness, respectively. Both models performed well and validated with 80% accuracy in classification and a mean difference of ±18% in biofilm thickness prediction from a new set of unseen live OCT images. The developed CNN models are a novel technology that has the potential to be implemented in desalination plants for early decision-making and biofouling mitigation.</p>\",\"PeriodicalId\":19375,\"journal\":{\"name\":\"npj Clean Water\",\"volume\":\"13 1\",\"pages\":\"\"},\"PeriodicalIF\":10.4000,\"publicationDate\":\"2025-03-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"npj Clean Water\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1038/s41545-025-00451-9\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, CHEMICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"npj Clean Water","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1038/s41545-025-00451-9","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0

摘要

本文章由计算机程序翻译,如有差异,请以英文原文为准。

Precise biofilm thickness prediction in SWRO desalination from planar camera images by DNN models

Precise biofilm thickness prediction in SWRO desalination from planar camera images by DNN models

Detecting and quantifying biofouling is a challenging process inside a seawater reverse osmosis (SWRO) module due to its design complexity and operating obstacles. Herein, deep Convolutional Neural Network (CNN) models were developed to accurately calculate the cross-sectional biofilm thickness (vertical plane) through membrane surface images (horizontal plane). Models took membrane surface image as input; the classification model (CNN-Class) predicted fouling classification, while the regression model (CNN-Reg) predicted the average biofilm thickness on the membrane surface. CNN-Class model showed 90% accuracy, and CNN-Reg reached a moderate mean difference of ±24% in predicting the classification and biofilm thickness, respectively. Both models performed well and validated with 80% accuracy in classification and a mean difference of ±18% in biofilm thickness prediction from a new set of unseen live OCT images. The developed CNN models are a novel technology that has the potential to be implemented in desalination plants for early decision-making and biofouling mitigation.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
npj Clean Water
npj Clean Water Environmental Science-Water Science and Technology
CiteScore
15.30
自引率
2.60%
发文量
61
审稿时长
5 weeks
期刊介绍: npj Clean Water publishes high-quality papers that report cutting-edge science, technology, applications, policies, and societal issues contributing to a more sustainable supply of clean water. The journal's publications may also support and accelerate the achievement of Sustainable Development Goal 6, which focuses on clean water and sanitation.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信