开发一种校准方法,以尽量减少听觉诱发电位的可变性。

IF 2.4 3区 医学 Q3 NEUROSCIENCES
Joseph Pinkl, Tao Shen, Jinsai Cheng, John Hawks, Jianxin Bao
{"title":"开发一种校准方法,以尽量减少听觉诱发电位的可变性。","authors":"Joseph Pinkl, Tao Shen, Jinsai Cheng, John Hawks, Jianxin Bao","doi":"10.1007/s10162-025-00982-5","DOIUrl":null,"url":null,"abstract":"<p><strong>Purpose: </strong>To reduce amplitude variability of auditory evoked potentials (AEPs) we developed a circuit that generates an electric calibration pulse (CalPulse) following each evoking sound presentation. We aim to determine if external CalPulse signals can function as a reliable calibration reference for AEP amplitude measurements.</p><p><strong>Methods: </strong>The CalPulse circuit was integrated with an AEP recording montage. The amplitude and morphology of two CalPulse signals (square wave and sine wave) was first assessed in vitro with electrodes submerged in saline. Repeatability of the two signals was then compared in vivo using five (3 male/2 female) 4-month-old CBA/CAJ mice and four unique auditory brainstem response (ABR) configurations. Sine wave CalPulse amplitudes were subsequently used to adjust raw ABR wave-1 amplitudes in a sample of 38 (19 male/19 female) CBA/CaJ mice. Variability in adjusted wave-1 amplitudes was compared with raw amplitudes. Measurements were repeated every month for 4 months (8 to 11 months old) to evaluate its potential as a tool to detect age-related changes in auditory function.</p><p><strong>Results: </strong>Wave quality examinations indicate that both CalPulse signal types are stable in vitro, with the sine wave signal being more repeatable when recorded in vivo. Sine wave CalPulse amplitudes correlated positively with ABR wave-1 amplitudes. Normalizing wave-1 amplitudes with CalPulse measures significantly reduced within-subject variability. Normalized wave-1 amplitudes showed a significant decrease at 10 months of age consistent with age-related cochlear synaptopathy, while uncalibrated wave-1 amplitudes from the same recordings failed to detect this decrease.</p><p><strong>Conclusion: </strong>Our new calibration circuit can be used to improve diagnostic sensitivity of AEP measures.</p>","PeriodicalId":56283,"journal":{"name":"Jaro-Journal of the Association for Research in Otolaryngology","volume":" ","pages":""},"PeriodicalIF":2.4000,"publicationDate":"2025-03-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Developing a Calibration Method to Minimize Variability in Auditory Evoked Potentials.\",\"authors\":\"Joseph Pinkl, Tao Shen, Jinsai Cheng, John Hawks, Jianxin Bao\",\"doi\":\"10.1007/s10162-025-00982-5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Purpose: </strong>To reduce amplitude variability of auditory evoked potentials (AEPs) we developed a circuit that generates an electric calibration pulse (CalPulse) following each evoking sound presentation. We aim to determine if external CalPulse signals can function as a reliable calibration reference for AEP amplitude measurements.</p><p><strong>Methods: </strong>The CalPulse circuit was integrated with an AEP recording montage. The amplitude and morphology of two CalPulse signals (square wave and sine wave) was first assessed in vitro with electrodes submerged in saline. Repeatability of the two signals was then compared in vivo using five (3 male/2 female) 4-month-old CBA/CAJ mice and four unique auditory brainstem response (ABR) configurations. Sine wave CalPulse amplitudes were subsequently used to adjust raw ABR wave-1 amplitudes in a sample of 38 (19 male/19 female) CBA/CaJ mice. Variability in adjusted wave-1 amplitudes was compared with raw amplitudes. Measurements were repeated every month for 4 months (8 to 11 months old) to evaluate its potential as a tool to detect age-related changes in auditory function.</p><p><strong>Results: </strong>Wave quality examinations indicate that both CalPulse signal types are stable in vitro, with the sine wave signal being more repeatable when recorded in vivo. Sine wave CalPulse amplitudes correlated positively with ABR wave-1 amplitudes. Normalizing wave-1 amplitudes with CalPulse measures significantly reduced within-subject variability. Normalized wave-1 amplitudes showed a significant decrease at 10 months of age consistent with age-related cochlear synaptopathy, while uncalibrated wave-1 amplitudes from the same recordings failed to detect this decrease.</p><p><strong>Conclusion: </strong>Our new calibration circuit can be used to improve diagnostic sensitivity of AEP measures.</p>\",\"PeriodicalId\":56283,\"journal\":{\"name\":\"Jaro-Journal of the Association for Research in Otolaryngology\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2025-03-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Jaro-Journal of the Association for Research in Otolaryngology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1007/s10162-025-00982-5\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"NEUROSCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Jaro-Journal of the Association for Research in Otolaryngology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s10162-025-00982-5","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

目的:为了减少听觉诱发电位(AEPs)的振幅变异性,我们开发了一种电路,在每次唤起的声音呈现后产生电校准脉冲(CalPulse)。我们的目的是确定外部CalPulse信号是否可以作为AEP振幅测量的可靠校准参考。方法:将CalPulse电路与AEP录制蒙太奇相结合。两种CalPulse信号(方波和正弦波)的振幅和形态首先在体外用电极浸泡在生理盐水中进行评估。然后用5只(3公2母)4月龄CBA/CAJ小鼠和4种独特的听觉脑干反应(ABR)配置在体内比较这两种信号的重复性。随后,使用正正弦CalPulse振幅来调整38只CBA/CaJ小鼠(19只雄性/19只雌性)的原始ABR波1振幅。将调整后的波1振幅变异性与原始振幅进行比较。在4个月(8至11个月)的时间里,每个月重复一次测量,以评估其作为检测听觉功能年龄相关变化工具的潜力。结果:波质量检测表明,两种CalPulse信号类型在体外都是稳定的,正弦波信号在体内记录时重复性更强。正弦波CalPulse振幅与ABR波1振幅呈正相关。用CalPulse测量的归一化波1振幅显著降低了受试者内部的可变性。标准化波1振幅在10个月大时显示出显著的下降,与年龄相关的耳蜗突触病一致,而来自相同记录的未校准波1振幅未能检测到这种下降。结论:该校准电路可提高AEP指标的诊断灵敏度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Developing a Calibration Method to Minimize Variability in Auditory Evoked Potentials.

Purpose: To reduce amplitude variability of auditory evoked potentials (AEPs) we developed a circuit that generates an electric calibration pulse (CalPulse) following each evoking sound presentation. We aim to determine if external CalPulse signals can function as a reliable calibration reference for AEP amplitude measurements.

Methods: The CalPulse circuit was integrated with an AEP recording montage. The amplitude and morphology of two CalPulse signals (square wave and sine wave) was first assessed in vitro with electrodes submerged in saline. Repeatability of the two signals was then compared in vivo using five (3 male/2 female) 4-month-old CBA/CAJ mice and four unique auditory brainstem response (ABR) configurations. Sine wave CalPulse amplitudes were subsequently used to adjust raw ABR wave-1 amplitudes in a sample of 38 (19 male/19 female) CBA/CaJ mice. Variability in adjusted wave-1 amplitudes was compared with raw amplitudes. Measurements were repeated every month for 4 months (8 to 11 months old) to evaluate its potential as a tool to detect age-related changes in auditory function.

Results: Wave quality examinations indicate that both CalPulse signal types are stable in vitro, with the sine wave signal being more repeatable when recorded in vivo. Sine wave CalPulse amplitudes correlated positively with ABR wave-1 amplitudes. Normalizing wave-1 amplitudes with CalPulse measures significantly reduced within-subject variability. Normalized wave-1 amplitudes showed a significant decrease at 10 months of age consistent with age-related cochlear synaptopathy, while uncalibrated wave-1 amplitudes from the same recordings failed to detect this decrease.

Conclusion: Our new calibration circuit can be used to improve diagnostic sensitivity of AEP measures.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
4.10
自引率
12.50%
发文量
57
审稿时长
6-12 weeks
期刊介绍: JARO is a peer-reviewed journal that publishes research findings from disciplines related to otolaryngology and communications sciences, including hearing, balance, speech and voice. JARO welcomes submissions describing experimental research that investigates the mechanisms underlying problems of basic and/or clinical significance. Authors are encouraged to familiarize themselves with the kinds of papers carried by JARO by looking at past issues. Clinical case studies and pharmaceutical screens are not likely to be considered unless they reveal underlying mechanisms. Methods papers are not encouraged unless they include significant new findings as well. Reviews will be published at the discretion of the editorial board; consult the editor-in-chief before submitting.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信