Omar A Mures, Manuel Silva, Manuel Lijo-Sanchez, Emilio J Padron, Jose A Iglesias-Guitian
{"title":"我应该渲染还是AI生成?合成语义分割数据集与控制生成。","authors":"Omar A Mures, Manuel Silva, Manuel Lijo-Sanchez, Emilio J Padron, Jose A Iglesias-Guitian","doi":"10.1109/MCG.2025.3553494","DOIUrl":null,"url":null,"abstract":"<p><p>This work explores the integration of generative AI models for automatically generating synthetic image-labeled data. Our approach leverages controllable Diffusion Models to generate synthetic variations of semantically labeled images. Synthetic datasets for semantic segmentation struggle to represent real-world subtleties, such as different weather conditions or fine details, typically relying on costly simulations and rendering. However, Diffusion Models can generate diverse images using input text prompts and guidance images, like semantic masks. Our work introduces and tests a novel methodology for generating labeled synthetic images, with an initial focus on semantic segmentation, a demanding computer vision task. We showcase our approach in two distinct image segmentation domains, outperforming traditional computer graphics simulations in efficiently creating diverse datasets and training downstream models. We leverage generative models for crafting synthetically labeled images, posing the question: \"Should I render or should AI generate?\". Our results endorse a paradigm shift towards controlled generation models.</p>","PeriodicalId":55026,"journal":{"name":"IEEE Computer Graphics and Applications","volume":"PP ","pages":""},"PeriodicalIF":1.7000,"publicationDate":"2025-03-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Should I render or should AI Generate? Crafting Synthetic Semantic Segmentation Datasets with Controlled Generation.\",\"authors\":\"Omar A Mures, Manuel Silva, Manuel Lijo-Sanchez, Emilio J Padron, Jose A Iglesias-Guitian\",\"doi\":\"10.1109/MCG.2025.3553494\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>This work explores the integration of generative AI models for automatically generating synthetic image-labeled data. Our approach leverages controllable Diffusion Models to generate synthetic variations of semantically labeled images. Synthetic datasets for semantic segmentation struggle to represent real-world subtleties, such as different weather conditions or fine details, typically relying on costly simulations and rendering. However, Diffusion Models can generate diverse images using input text prompts and guidance images, like semantic masks. Our work introduces and tests a novel methodology for generating labeled synthetic images, with an initial focus on semantic segmentation, a demanding computer vision task. We showcase our approach in two distinct image segmentation domains, outperforming traditional computer graphics simulations in efficiently creating diverse datasets and training downstream models. We leverage generative models for crafting synthetically labeled images, posing the question: \\\"Should I render or should AI generate?\\\". Our results endorse a paradigm shift towards controlled generation models.</p>\",\"PeriodicalId\":55026,\"journal\":{\"name\":\"IEEE Computer Graphics and Applications\",\"volume\":\"PP \",\"pages\":\"\"},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2025-03-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Computer Graphics and Applications\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1109/MCG.2025.3553494\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, SOFTWARE ENGINEERING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Computer Graphics and Applications","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1109/MCG.2025.3553494","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, SOFTWARE ENGINEERING","Score":null,"Total":0}
Should I render or should AI Generate? Crafting Synthetic Semantic Segmentation Datasets with Controlled Generation.
This work explores the integration of generative AI models for automatically generating synthetic image-labeled data. Our approach leverages controllable Diffusion Models to generate synthetic variations of semantically labeled images. Synthetic datasets for semantic segmentation struggle to represent real-world subtleties, such as different weather conditions or fine details, typically relying on costly simulations and rendering. However, Diffusion Models can generate diverse images using input text prompts and guidance images, like semantic masks. Our work introduces and tests a novel methodology for generating labeled synthetic images, with an initial focus on semantic segmentation, a demanding computer vision task. We showcase our approach in two distinct image segmentation domains, outperforming traditional computer graphics simulations in efficiently creating diverse datasets and training downstream models. We leverage generative models for crafting synthetically labeled images, posing the question: "Should I render or should AI generate?". Our results endorse a paradigm shift towards controlled generation models.
期刊介绍:
IEEE Computer Graphics and Applications (CG&A) bridges the theory and practice of computer graphics, visualization, virtual and augmented reality, and HCI. From specific algorithms to full system implementations, CG&A offers a unique combination of peer-reviewed feature articles and informal departments. Theme issues guest edited by leading researchers in their fields track the latest developments and trends in computer-generated graphical content, while tutorials and surveys provide a broad overview of interesting and timely topics. Regular departments further explore the core areas of graphics as well as extend into topics such as usability, education, history, and opinion. Each issue, the story of our cover focuses on creative applications of the technology by an artist or designer. Published six times a year, CG&A is indispensable reading for people working at the leading edge of computer-generated graphics technology and its applications in everything from business to the arts.