Beatrice Di Marco , Filippo Marchetti , Stefania Costa , Erika Baldini , Anna Baldisserotto , Irene Gugel , Silvia Vertuani , Enrica Strettoi , Stefano Manfredini
{"title":"具有抗炎和抗氧化效力的双作用类固醇衍生物:一项体外研究。","authors":"Beatrice Di Marco , Filippo Marchetti , Stefania Costa , Erika Baldini , Anna Baldisserotto , Irene Gugel , Silvia Vertuani , Enrica Strettoi , Stefano Manfredini","doi":"10.1016/j.biopha.2025.117940","DOIUrl":null,"url":null,"abstract":"<div><div>In a recent study, we obtained two novel cortisone-derived molecules: 1,9β,17,21- tetrahydroxy-4-methyl-19-nor-9β-pregna-1,3,5(10)-trien-11,20-dione(SCA)and 1,9β,17,20β,21-pentahydroxy-4-methyl-19-nor-9β-pregna-1,3,5(10)-trien-11-one(SCB). These compounds showed a dual activity combining potent anti-inflammatory and antioxidant properties, suggesting their potential as therapeutic agents for conditions characterized by inflammation and oxidative stress, such as severe ocular disorders. In this study, in vitro experiments using human ARPE-19 and mouse 661 W cell lines, which model the retinal pigment epithelium and retinal photoreceptors respectively, revealed that pretreatment with SCA and SCB under oxidative stress with H<sub>2</sub>O<sub>2</sub> preserved cell viability, reduced intracellular ROS levels, maintained tight junction integrity and Trans Epithelial Electrical Resistance (TEER). Moreover, both compounds enhanced mitochondrial respiration, thereby improving cellular bioenergetics. These results indicate that SCA and SCB could provide an effective alternative to traditional corticosteroids in treating complications in which oxidative stress and inflammation are combined, including diseases such as age-related macular degeneration (AMD) and retinitis pigmentosa (RP). Preclinical studies on animal models and trials on human ocular diseases are necessary to validate these findings in vivo and explore their therapeutic potential.</div></div>","PeriodicalId":8966,"journal":{"name":"Biomedicine & Pharmacotherapy","volume":"186 ","pages":"Article 117940"},"PeriodicalIF":6.9000,"publicationDate":"2025-03-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Dual-action steroid derivatives with anti-inflammatory and antioxidant potency: An in vitro study\",\"authors\":\"Beatrice Di Marco , Filippo Marchetti , Stefania Costa , Erika Baldini , Anna Baldisserotto , Irene Gugel , Silvia Vertuani , Enrica Strettoi , Stefano Manfredini\",\"doi\":\"10.1016/j.biopha.2025.117940\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>In a recent study, we obtained two novel cortisone-derived molecules: 1,9β,17,21- tetrahydroxy-4-methyl-19-nor-9β-pregna-1,3,5(10)-trien-11,20-dione(SCA)and 1,9β,17,20β,21-pentahydroxy-4-methyl-19-nor-9β-pregna-1,3,5(10)-trien-11-one(SCB). These compounds showed a dual activity combining potent anti-inflammatory and antioxidant properties, suggesting their potential as therapeutic agents for conditions characterized by inflammation and oxidative stress, such as severe ocular disorders. In this study, in vitro experiments using human ARPE-19 and mouse 661 W cell lines, which model the retinal pigment epithelium and retinal photoreceptors respectively, revealed that pretreatment with SCA and SCB under oxidative stress with H<sub>2</sub>O<sub>2</sub> preserved cell viability, reduced intracellular ROS levels, maintained tight junction integrity and Trans Epithelial Electrical Resistance (TEER). Moreover, both compounds enhanced mitochondrial respiration, thereby improving cellular bioenergetics. These results indicate that SCA and SCB could provide an effective alternative to traditional corticosteroids in treating complications in which oxidative stress and inflammation are combined, including diseases such as age-related macular degeneration (AMD) and retinitis pigmentosa (RP). Preclinical studies on animal models and trials on human ocular diseases are necessary to validate these findings in vivo and explore their therapeutic potential.</div></div>\",\"PeriodicalId\":8966,\"journal\":{\"name\":\"Biomedicine & Pharmacotherapy\",\"volume\":\"186 \",\"pages\":\"Article 117940\"},\"PeriodicalIF\":6.9000,\"publicationDate\":\"2025-03-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biomedicine & Pharmacotherapy\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0753332225001349\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MEDICINE, RESEARCH & EXPERIMENTAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomedicine & Pharmacotherapy","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0753332225001349","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MEDICINE, RESEARCH & EXPERIMENTAL","Score":null,"Total":0}
Dual-action steroid derivatives with anti-inflammatory and antioxidant potency: An in vitro study
In a recent study, we obtained two novel cortisone-derived molecules: 1,9β,17,21- tetrahydroxy-4-methyl-19-nor-9β-pregna-1,3,5(10)-trien-11,20-dione(SCA)and 1,9β,17,20β,21-pentahydroxy-4-methyl-19-nor-9β-pregna-1,3,5(10)-trien-11-one(SCB). These compounds showed a dual activity combining potent anti-inflammatory and antioxidant properties, suggesting their potential as therapeutic agents for conditions characterized by inflammation and oxidative stress, such as severe ocular disorders. In this study, in vitro experiments using human ARPE-19 and mouse 661 W cell lines, which model the retinal pigment epithelium and retinal photoreceptors respectively, revealed that pretreatment with SCA and SCB under oxidative stress with H2O2 preserved cell viability, reduced intracellular ROS levels, maintained tight junction integrity and Trans Epithelial Electrical Resistance (TEER). Moreover, both compounds enhanced mitochondrial respiration, thereby improving cellular bioenergetics. These results indicate that SCA and SCB could provide an effective alternative to traditional corticosteroids in treating complications in which oxidative stress and inflammation are combined, including diseases such as age-related macular degeneration (AMD) and retinitis pigmentosa (RP). Preclinical studies on animal models and trials on human ocular diseases are necessary to validate these findings in vivo and explore their therapeutic potential.
期刊介绍:
Biomedicine & Pharmacotherapy stands as a multidisciplinary journal, presenting a spectrum of original research reports, reviews, and communications in the realms of clinical and basic medicine, as well as pharmacology. The journal spans various fields, including Cancer, Nutriceutics, Neurodegenerative, Cardiac, and Infectious Diseases.