Ariel F Perez Mellor, Thomas Bürgi, Riccardo Spezia
{"title":"质子化恶唑酮的气相反应性:化学动力学模拟和基于图论的分析揭示了离子-分子复合物的重要性。","authors":"Ariel F Perez Mellor, Thomas Bürgi, Riccardo Spezia","doi":"10.1063/5.0245766","DOIUrl":null,"url":null,"abstract":"<p><p>This study delves into the fragmentation mechanisms of the oxazolone form (OXA) of protonated cyclo-di-glycine using chemical dynamics simulations at multiple internal energies. While we focus our in-depth analyses on a representative total energy of 178 kcal/mol, we also performed simulations over the 127-187 kcal/mol range. This broader energy sampling reveals how the population of states evolves with increasing internal energy, enabling us to compute rate constants and then effective energy thresholds using a previously introduced three-state model [Perez Mellor et al., J. Chem. Phys. 155, 124103 (2021)]. By transforming molecular geometries into graph representations, we systematically analyze fragmentation processes and identify key intermediates and ion-molecule complexes (IMCs) that play a crucial role in fragmentation dynamics. The study highlights the distinct isomerization landscapes of OXA, driven by IMC formation, which contrasts with the previously reported behavior of cyclic and linear forms [Perez Mellor et al., J. Chem. Phys. 155, 124103 (2021)]. The resulting fragmentation channels are characterized by their unique energetic thresholds and branching ratios and can provide a molecular explanation of what was observed experimentally. Thanks to an accurate analysis of the trajectories using our graph-theory-based tools, it was possible to point out the particular behavior of OXA fragmentation, which is different from other isomers. In particular, the important role of IMCs is shown, which has an impact on populating different isomeric structures.</p>","PeriodicalId":15313,"journal":{"name":"Journal of Chemical Physics","volume":"162 11","pages":""},"PeriodicalIF":3.1000,"publicationDate":"2025-03-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Gas-phase reactivity of protonated oxazolone: Chemical dynamics simulations and graph theory-based analysis reveal the importance of ion-molecule complexes.\",\"authors\":\"Ariel F Perez Mellor, Thomas Bürgi, Riccardo Spezia\",\"doi\":\"10.1063/5.0245766\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>This study delves into the fragmentation mechanisms of the oxazolone form (OXA) of protonated cyclo-di-glycine using chemical dynamics simulations at multiple internal energies. While we focus our in-depth analyses on a representative total energy of 178 kcal/mol, we also performed simulations over the 127-187 kcal/mol range. This broader energy sampling reveals how the population of states evolves with increasing internal energy, enabling us to compute rate constants and then effective energy thresholds using a previously introduced three-state model [Perez Mellor et al., J. Chem. Phys. 155, 124103 (2021)]. By transforming molecular geometries into graph representations, we systematically analyze fragmentation processes and identify key intermediates and ion-molecule complexes (IMCs) that play a crucial role in fragmentation dynamics. The study highlights the distinct isomerization landscapes of OXA, driven by IMC formation, which contrasts with the previously reported behavior of cyclic and linear forms [Perez Mellor et al., J. Chem. Phys. 155, 124103 (2021)]. The resulting fragmentation channels are characterized by their unique energetic thresholds and branching ratios and can provide a molecular explanation of what was observed experimentally. Thanks to an accurate analysis of the trajectories using our graph-theory-based tools, it was possible to point out the particular behavior of OXA fragmentation, which is different from other isomers. In particular, the important role of IMCs is shown, which has an impact on populating different isomeric structures.</p>\",\"PeriodicalId\":15313,\"journal\":{\"name\":\"Journal of Chemical Physics\",\"volume\":\"162 11\",\"pages\":\"\"},\"PeriodicalIF\":3.1000,\"publicationDate\":\"2025-03-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Chemical Physics\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1063/5.0245766\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Chemical Physics","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1063/5.0245766","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
Gas-phase reactivity of protonated oxazolone: Chemical dynamics simulations and graph theory-based analysis reveal the importance of ion-molecule complexes.
This study delves into the fragmentation mechanisms of the oxazolone form (OXA) of protonated cyclo-di-glycine using chemical dynamics simulations at multiple internal energies. While we focus our in-depth analyses on a representative total energy of 178 kcal/mol, we also performed simulations over the 127-187 kcal/mol range. This broader energy sampling reveals how the population of states evolves with increasing internal energy, enabling us to compute rate constants and then effective energy thresholds using a previously introduced three-state model [Perez Mellor et al., J. Chem. Phys. 155, 124103 (2021)]. By transforming molecular geometries into graph representations, we systematically analyze fragmentation processes and identify key intermediates and ion-molecule complexes (IMCs) that play a crucial role in fragmentation dynamics. The study highlights the distinct isomerization landscapes of OXA, driven by IMC formation, which contrasts with the previously reported behavior of cyclic and linear forms [Perez Mellor et al., J. Chem. Phys. 155, 124103 (2021)]. The resulting fragmentation channels are characterized by their unique energetic thresholds and branching ratios and can provide a molecular explanation of what was observed experimentally. Thanks to an accurate analysis of the trajectories using our graph-theory-based tools, it was possible to point out the particular behavior of OXA fragmentation, which is different from other isomers. In particular, the important role of IMCs is shown, which has an impact on populating different isomeric structures.
期刊介绍:
The Journal of Chemical Physics publishes quantitative and rigorous science of long-lasting value in methods and applications of chemical physics. The Journal also publishes brief Communications of significant new findings, Perspectives on the latest advances in the field, and Special Topic issues. The Journal focuses on innovative research in experimental and theoretical areas of chemical physics, including spectroscopy, dynamics, kinetics, statistical mechanics, and quantum mechanics. In addition, topical areas such as polymers, soft matter, materials, surfaces/interfaces, and systems of biological relevance are of increasing importance.
Topical coverage includes:
Theoretical Methods and Algorithms
Advanced Experimental Techniques
Atoms, Molecules, and Clusters
Liquids, Glasses, and Crystals
Surfaces, Interfaces, and Materials
Polymers and Soft Matter
Biological Molecules and Networks.