Bismi Rasheed , Øystein Bjelland , Andreas F. Dalen , Hans Georg Schaathun
{"title":"超弹性半月板材料表征通过反参数识别膝关节镜模拟。","authors":"Bismi Rasheed , Øystein Bjelland , Andreas F. Dalen , Hans Georg Schaathun","doi":"10.1016/j.jbiomech.2025.112627","DOIUrl":null,"url":null,"abstract":"<div><div>Understanding the complex behavior of menisci is of growing interest in many fields including sports medicine, surgical simulation, and implant design. The selection of an appropriate material model and accurate model parameters contribute to identifying the degree of degeneration of the meniscus. Incorporating patient-specific material parameters could further improve the safe handling of tissue during probing in knee arthroscopy simulations, supporting more informed intraoperative decision-making. The objective of this study is to identify hyperelastic material parameters of individual human menisci based on an inverse parameter identification approach using optimization and demonstrate a real-time interactive surgical simulation using identified parameters. Mechanical tests were conducted in indentation of the anterior, mid-body, and posterior regions of five lateral and medial menisci to obtain experimental force–displacement data. An inverse parameter identification based on these tests and finite element (FE) models was employed to minimize the differences between the experimental and simulated force. The region-specific FE models considered the predominant collagen fiber orientation of the meniscus. Anisotropic hyperelastic material parameters were optimized using a particle swarm optimization algorithm. Finally, the optimized parameters were used in simulation open framework architecture (SOFA) and demonstrated a real-time probe-meniscus interaction during the arthroscopic meniscus examination. The optimized values revealed subject-specific characteristics, along with anatomical and regional variations, with high shear modulus observed in the anterior region of the medial meniscus (0.76 ± 0.28 MPa for 1 mm indentation). Additionally, an increase in shear modulus was observed with increased indentation depth (<span><math><mrow><mi>p</mi><mo><</mo><mn>0</mn><mo>.</mo><mn>05</mn></mrow></math></span> except for the mid-body of the medial meniscus).</div></div>","PeriodicalId":15168,"journal":{"name":"Journal of biomechanics","volume":"183 ","pages":"Article 112627"},"PeriodicalIF":2.4000,"publicationDate":"2025-03-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Hyperelastic meniscal material characterization via inverse parameter identification for knee arthroscopic simulations\",\"authors\":\"Bismi Rasheed , Øystein Bjelland , Andreas F. Dalen , Hans Georg Schaathun\",\"doi\":\"10.1016/j.jbiomech.2025.112627\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Understanding the complex behavior of menisci is of growing interest in many fields including sports medicine, surgical simulation, and implant design. The selection of an appropriate material model and accurate model parameters contribute to identifying the degree of degeneration of the meniscus. Incorporating patient-specific material parameters could further improve the safe handling of tissue during probing in knee arthroscopy simulations, supporting more informed intraoperative decision-making. The objective of this study is to identify hyperelastic material parameters of individual human menisci based on an inverse parameter identification approach using optimization and demonstrate a real-time interactive surgical simulation using identified parameters. Mechanical tests were conducted in indentation of the anterior, mid-body, and posterior regions of five lateral and medial menisci to obtain experimental force–displacement data. An inverse parameter identification based on these tests and finite element (FE) models was employed to minimize the differences between the experimental and simulated force. The region-specific FE models considered the predominant collagen fiber orientation of the meniscus. Anisotropic hyperelastic material parameters were optimized using a particle swarm optimization algorithm. Finally, the optimized parameters were used in simulation open framework architecture (SOFA) and demonstrated a real-time probe-meniscus interaction during the arthroscopic meniscus examination. The optimized values revealed subject-specific characteristics, along with anatomical and regional variations, with high shear modulus observed in the anterior region of the medial meniscus (0.76 ± 0.28 MPa for 1 mm indentation). Additionally, an increase in shear modulus was observed with increased indentation depth (<span><math><mrow><mi>p</mi><mo><</mo><mn>0</mn><mo>.</mo><mn>05</mn></mrow></math></span> except for the mid-body of the medial meniscus).</div></div>\",\"PeriodicalId\":15168,\"journal\":{\"name\":\"Journal of biomechanics\",\"volume\":\"183 \",\"pages\":\"Article 112627\"},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2025-03-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of biomechanics\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0021929025001381\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"BIOPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of biomechanics","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0021929025001381","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOPHYSICS","Score":null,"Total":0}
Hyperelastic meniscal material characterization via inverse parameter identification for knee arthroscopic simulations
Understanding the complex behavior of menisci is of growing interest in many fields including sports medicine, surgical simulation, and implant design. The selection of an appropriate material model and accurate model parameters contribute to identifying the degree of degeneration of the meniscus. Incorporating patient-specific material parameters could further improve the safe handling of tissue during probing in knee arthroscopy simulations, supporting more informed intraoperative decision-making. The objective of this study is to identify hyperelastic material parameters of individual human menisci based on an inverse parameter identification approach using optimization and demonstrate a real-time interactive surgical simulation using identified parameters. Mechanical tests were conducted in indentation of the anterior, mid-body, and posterior regions of five lateral and medial menisci to obtain experimental force–displacement data. An inverse parameter identification based on these tests and finite element (FE) models was employed to minimize the differences between the experimental and simulated force. The region-specific FE models considered the predominant collagen fiber orientation of the meniscus. Anisotropic hyperelastic material parameters were optimized using a particle swarm optimization algorithm. Finally, the optimized parameters were used in simulation open framework architecture (SOFA) and demonstrated a real-time probe-meniscus interaction during the arthroscopic meniscus examination. The optimized values revealed subject-specific characteristics, along with anatomical and regional variations, with high shear modulus observed in the anterior region of the medial meniscus (0.76 ± 0.28 MPa for 1 mm indentation). Additionally, an increase in shear modulus was observed with increased indentation depth ( except for the mid-body of the medial meniscus).
期刊介绍:
The Journal of Biomechanics publishes reports of original and substantial findings using the principles of mechanics to explore biological problems. Analytical, as well as experimental papers may be submitted, and the journal accepts original articles, surveys and perspective articles (usually by Editorial invitation only), book reviews and letters to the Editor. The criteria for acceptance of manuscripts include excellence, novelty, significance, clarity, conciseness and interest to the readership.
Papers published in the journal may cover a wide range of topics in biomechanics, including, but not limited to:
-Fundamental Topics - Biomechanics of the musculoskeletal, cardiovascular, and respiratory systems, mechanics of hard and soft tissues, biofluid mechanics, mechanics of prostheses and implant-tissue interfaces, mechanics of cells.
-Cardiovascular and Respiratory Biomechanics - Mechanics of blood-flow, air-flow, mechanics of the soft tissues, flow-tissue or flow-prosthesis interactions.
-Cell Biomechanics - Biomechanic analyses of cells, membranes and sub-cellular structures; the relationship of the mechanical environment to cell and tissue response.
-Dental Biomechanics - Design and analysis of dental tissues and prostheses, mechanics of chewing.
-Functional Tissue Engineering - The role of biomechanical factors in engineered tissue replacements and regenerative medicine.
-Injury Biomechanics - Mechanics of impact and trauma, dynamics of man-machine interaction.
-Molecular Biomechanics - Mechanical analyses of biomolecules.
-Orthopedic Biomechanics - Mechanics of fracture and fracture fixation, mechanics of implants and implant fixation, mechanics of bones and joints, wear of natural and artificial joints.
-Rehabilitation Biomechanics - Analyses of gait, mechanics of prosthetics and orthotics.
-Sports Biomechanics - Mechanical analyses of sports performance.