{"title":"强激光场诱导的二氧化碳三聚体超快碎裂动力学:瞬态形变途径与直接库仑斥力。","authors":"Weiqing Xu, Ruichao Dong, Xincheng Wang, Ahai Chen, Yuhai Jiang","doi":"10.1063/5.0255127","DOIUrl":null,"url":null,"abstract":"<p><p>We present a combined experimental and theoretical study of the detailed fragmentation process of CO23+→ CO2+ + O+ induced by an intense laser field. Through multicoincidence fragment measurements together with ab initio molecular dynamics (AIMD) simulations, we find that a transient deformation route appears in competition with the expected Coulomb explosion. The AIMD simulations visually demonstrate that CO23+ undergoes several bending vibrations in ∼50-480 fs, and in the final dissociation stages, the electron density distribution in three-dimensional space migrates from the O ion to the C ion, while the bond strength rapidly decreases to 0, resulting in bond breaking assisted by the asymmetric stretching vibrations. The measured kinetic energy releases are in general agreement with AIMD simulations, and the deduced amount of energy transfer into the vibrational and rotational degrees of freedom of CO2+ is about 3 eV less than that estimated by the Coulomb potential.</p>","PeriodicalId":15313,"journal":{"name":"Journal of Chemical Physics","volume":"162 11","pages":""},"PeriodicalIF":3.1000,"publicationDate":"2025-03-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Ultrafast fragmentation dynamics of carbon dioxide trication induced by an intense laser field: Transient deformation route vs direct Coulomb repulsion.\",\"authors\":\"Weiqing Xu, Ruichao Dong, Xincheng Wang, Ahai Chen, Yuhai Jiang\",\"doi\":\"10.1063/5.0255127\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>We present a combined experimental and theoretical study of the detailed fragmentation process of CO23+→ CO2+ + O+ induced by an intense laser field. Through multicoincidence fragment measurements together with ab initio molecular dynamics (AIMD) simulations, we find that a transient deformation route appears in competition with the expected Coulomb explosion. The AIMD simulations visually demonstrate that CO23+ undergoes several bending vibrations in ∼50-480 fs, and in the final dissociation stages, the electron density distribution in three-dimensional space migrates from the O ion to the C ion, while the bond strength rapidly decreases to 0, resulting in bond breaking assisted by the asymmetric stretching vibrations. The measured kinetic energy releases are in general agreement with AIMD simulations, and the deduced amount of energy transfer into the vibrational and rotational degrees of freedom of CO2+ is about 3 eV less than that estimated by the Coulomb potential.</p>\",\"PeriodicalId\":15313,\"journal\":{\"name\":\"Journal of Chemical Physics\",\"volume\":\"162 11\",\"pages\":\"\"},\"PeriodicalIF\":3.1000,\"publicationDate\":\"2025-03-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Chemical Physics\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1063/5.0255127\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Chemical Physics","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1063/5.0255127","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
Ultrafast fragmentation dynamics of carbon dioxide trication induced by an intense laser field: Transient deformation route vs direct Coulomb repulsion.
We present a combined experimental and theoretical study of the detailed fragmentation process of CO23+→ CO2+ + O+ induced by an intense laser field. Through multicoincidence fragment measurements together with ab initio molecular dynamics (AIMD) simulations, we find that a transient deformation route appears in competition with the expected Coulomb explosion. The AIMD simulations visually demonstrate that CO23+ undergoes several bending vibrations in ∼50-480 fs, and in the final dissociation stages, the electron density distribution in three-dimensional space migrates from the O ion to the C ion, while the bond strength rapidly decreases to 0, resulting in bond breaking assisted by the asymmetric stretching vibrations. The measured kinetic energy releases are in general agreement with AIMD simulations, and the deduced amount of energy transfer into the vibrational and rotational degrees of freedom of CO2+ is about 3 eV less than that estimated by the Coulomb potential.
期刊介绍:
The Journal of Chemical Physics publishes quantitative and rigorous science of long-lasting value in methods and applications of chemical physics. The Journal also publishes brief Communications of significant new findings, Perspectives on the latest advances in the field, and Special Topic issues. The Journal focuses on innovative research in experimental and theoretical areas of chemical physics, including spectroscopy, dynamics, kinetics, statistical mechanics, and quantum mechanics. In addition, topical areas such as polymers, soft matter, materials, surfaces/interfaces, and systems of biological relevance are of increasing importance.
Topical coverage includes:
Theoretical Methods and Algorithms
Advanced Experimental Techniques
Atoms, Molecules, and Clusters
Liquids, Glasses, and Crystals
Surfaces, Interfaces, and Materials
Polymers and Soft Matter
Biological Molecules and Networks.