Yunjia Xia;Jianan Chen;Jinchen Li;Tingchen Gong;Ernesto E. Vidal-Rosas;Rui Loureiro;Robert J. Cooper;Hubin Zhao
{"title":"脑机接口和神经反馈的fNIRS/DOT深度学习实时处理平台。","authors":"Yunjia Xia;Jianan Chen;Jinchen Li;Tingchen Gong;Ernesto E. Vidal-Rosas;Rui Loureiro;Robert J. Cooper;Hubin Zhao","doi":"10.1109/TNSRE.2025.3553794","DOIUrl":null,"url":null,"abstract":"Brain-Computer Interfaces (BCI) and Neurofeedback (NFB) approaches, which both rely on real-time monitoring of brain activity, are increasingly being applied in rehabilitation, assistive technology, neurological diseases and behavioral disorders. Functional near-infrared spectroscopy (fNIRS) and diffuse optical tomography (DOT) are promising techniques for these applications due to their non-invasiveness, portability, low cost, and relatively high spatial resolution. However, real-time processing of fNIRS/DOT data remains a significant challenge as it requires establishing a baseline of the measurement, simultaneously performing real-time motion artifact (MA) correction across all channels, and (in the case of DOT) addressing the time-consuming process of image reconstruction. This study proposes a real-time processing system for fNIRS/DOT that integrates baseline calibration, denoising autoencoder (DAE) based MA correction model with a sliding window strategy, and a pre-calculated inverse Jacobian matrix to streamline the reconstructed 3D brain hemodynamics. The DAE model was trained on an extensive whole-head high-density DOT (HD-DOT) dataset and tested on separate motor imagery dataset augmented with artificial MA. The system demonstrated the capability to simultaneously process approximately 750 channels in real-time. Our results show that the DAE-based MA correction method outperformed traditional MA correction in terms of mean squared error and correlation to the known MA-free data while maintaining low latency, which is critical for effective BCI and NFB applications. The system’s high-channel, real-time processing capability provides channel-wise oxygenation information and functional 3D imaging, making it well-suited for fNIRS/DOT applications in BCI and NFB, particularly in movement-intensive scenarios such as motor rehabilitation and assistive technology for mobility support.","PeriodicalId":13419,"journal":{"name":"IEEE Transactions on Neural Systems and Rehabilitation Engineering","volume":"33 ","pages":"1220-1230"},"PeriodicalIF":4.8000,"publicationDate":"2025-03-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10937099","citationCount":"0","resultStr":"{\"title\":\"A Deep-Learning Empowered, Real-Time Processing Platform of fNIRS/DOT for Brain Computer Interfaces and Neurofeedback\",\"authors\":\"Yunjia Xia;Jianan Chen;Jinchen Li;Tingchen Gong;Ernesto E. Vidal-Rosas;Rui Loureiro;Robert J. Cooper;Hubin Zhao\",\"doi\":\"10.1109/TNSRE.2025.3553794\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Brain-Computer Interfaces (BCI) and Neurofeedback (NFB) approaches, which both rely on real-time monitoring of brain activity, are increasingly being applied in rehabilitation, assistive technology, neurological diseases and behavioral disorders. Functional near-infrared spectroscopy (fNIRS) and diffuse optical tomography (DOT) are promising techniques for these applications due to their non-invasiveness, portability, low cost, and relatively high spatial resolution. However, real-time processing of fNIRS/DOT data remains a significant challenge as it requires establishing a baseline of the measurement, simultaneously performing real-time motion artifact (MA) correction across all channels, and (in the case of DOT) addressing the time-consuming process of image reconstruction. This study proposes a real-time processing system for fNIRS/DOT that integrates baseline calibration, denoising autoencoder (DAE) based MA correction model with a sliding window strategy, and a pre-calculated inverse Jacobian matrix to streamline the reconstructed 3D brain hemodynamics. The DAE model was trained on an extensive whole-head high-density DOT (HD-DOT) dataset and tested on separate motor imagery dataset augmented with artificial MA. The system demonstrated the capability to simultaneously process approximately 750 channels in real-time. Our results show that the DAE-based MA correction method outperformed traditional MA correction in terms of mean squared error and correlation to the known MA-free data while maintaining low latency, which is critical for effective BCI and NFB applications. The system’s high-channel, real-time processing capability provides channel-wise oxygenation information and functional 3D imaging, making it well-suited for fNIRS/DOT applications in BCI and NFB, particularly in movement-intensive scenarios such as motor rehabilitation and assistive technology for mobility support.\",\"PeriodicalId\":13419,\"journal\":{\"name\":\"IEEE Transactions on Neural Systems and Rehabilitation Engineering\",\"volume\":\"33 \",\"pages\":\"1220-1230\"},\"PeriodicalIF\":4.8000,\"publicationDate\":\"2025-03-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10937099\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Transactions on Neural Systems and Rehabilitation Engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10937099/\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, BIOMEDICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Neural Systems and Rehabilitation Engineering","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10937099/","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
A Deep-Learning Empowered, Real-Time Processing Platform of fNIRS/DOT for Brain Computer Interfaces and Neurofeedback
Brain-Computer Interfaces (BCI) and Neurofeedback (NFB) approaches, which both rely on real-time monitoring of brain activity, are increasingly being applied in rehabilitation, assistive technology, neurological diseases and behavioral disorders. Functional near-infrared spectroscopy (fNIRS) and diffuse optical tomography (DOT) are promising techniques for these applications due to their non-invasiveness, portability, low cost, and relatively high spatial resolution. However, real-time processing of fNIRS/DOT data remains a significant challenge as it requires establishing a baseline of the measurement, simultaneously performing real-time motion artifact (MA) correction across all channels, and (in the case of DOT) addressing the time-consuming process of image reconstruction. This study proposes a real-time processing system for fNIRS/DOT that integrates baseline calibration, denoising autoencoder (DAE) based MA correction model with a sliding window strategy, and a pre-calculated inverse Jacobian matrix to streamline the reconstructed 3D brain hemodynamics. The DAE model was trained on an extensive whole-head high-density DOT (HD-DOT) dataset and tested on separate motor imagery dataset augmented with artificial MA. The system demonstrated the capability to simultaneously process approximately 750 channels in real-time. Our results show that the DAE-based MA correction method outperformed traditional MA correction in terms of mean squared error and correlation to the known MA-free data while maintaining low latency, which is critical for effective BCI and NFB applications. The system’s high-channel, real-time processing capability provides channel-wise oxygenation information and functional 3D imaging, making it well-suited for fNIRS/DOT applications in BCI and NFB, particularly in movement-intensive scenarios such as motor rehabilitation and assistive technology for mobility support.
期刊介绍:
Rehabilitative and neural aspects of biomedical engineering, including functional electrical stimulation, acoustic dynamics, human performance measurement and analysis, nerve stimulation, electromyography, motor control and stimulation; and hardware and software applications for rehabilitation engineering and assistive devices.