用来自野生盐生植物的耐盐根瘤菌接种玉米(Zea mays L.)种子可改善幼苗对盐胁迫的生理和生化反应。

IF 1.8 4区 生物学 Q3 BIOLOGY
Ökkeş Atici, İhsan Aydın, Sinem Karakus, Deniz Tiryaki
{"title":"用来自野生盐生植物的耐盐根瘤菌接种玉米(Zea mays L.)种子可改善幼苗对盐胁迫的生理和生化反应。","authors":"Ökkeş Atici, İhsan Aydın, Sinem Karakus, Deniz Tiryaki","doi":"10.1007/s42977-025-00253-7","DOIUrl":null,"url":null,"abstract":"<p><p>Salinity stress is a major environmental factor that poses a significant constraint to plant growth, threatening agricultural productivity and sustainability. This study investigated the potential of halotolerant bacteria, isolated from the rhizosphere of wild halotolerant plants in Turkey's Salt Lake basin, to enhance salt stress tolerance in maize (Zea mays L.). The rhizospheres of 17 different wild halotolerant plants were selected for bacterial isolation, resulting in the identification of 22 halotolerant bacteria using 16S rRNA sequence analysis. Among these, 19 isolates were found to possess positive activity for 1-aminocyclopropane-1-carboxylate (ACC) deaminase and nitrogen fixation. When the maize seeds inoculated with these 19 isolates were grown under normal conditions, four isolates‒TG-4 (Halomonas arcis), TG-8 (Marinococcus tarigensis), TG-12 (Halobacillus dabanensis), and TG-20 (Halomonas eurihalina)-significantly stimulated seedling growth and development. To evaluate the effect of these four isolates on salt tolerance, inoculated seeds were grown under various salt conditions (0.0, 75, 150, and 250 mM NaCl). The responses of plants to salt stress were analyzed by evaluating growth parameters, membrane damage, photosynthetic pigment and proline content, reactive oxygen species and lipid peroxidation levels, and antioxidant enzyme activities. According to the parameters, the results indicated that TG-4, TG-8, and TG-12, in particular, have the potential to function as plant growth-promoting rhizobacteria and effectively enhance salt stress tolerance in the maize seedlings. Overall, this research highlights the potential of halotolerant bacteria to improve salt stress tolerance in maize plants through multifaceted mechanisms, offering valuable insights for sustainable agriculture in saline environments.</p>","PeriodicalId":8853,"journal":{"name":"Biologia futura","volume":" ","pages":""},"PeriodicalIF":1.8000,"publicationDate":"2025-03-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Inoculating maize (Zea mays L.) seeds with halotolerant rhizobacteria from wild halophytes improves physiological and biochemical responses of seedlings to salt stress.\",\"authors\":\"Ökkeş Atici, İhsan Aydın, Sinem Karakus, Deniz Tiryaki\",\"doi\":\"10.1007/s42977-025-00253-7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Salinity stress is a major environmental factor that poses a significant constraint to plant growth, threatening agricultural productivity and sustainability. This study investigated the potential of halotolerant bacteria, isolated from the rhizosphere of wild halotolerant plants in Turkey's Salt Lake basin, to enhance salt stress tolerance in maize (Zea mays L.). The rhizospheres of 17 different wild halotolerant plants were selected for bacterial isolation, resulting in the identification of 22 halotolerant bacteria using 16S rRNA sequence analysis. Among these, 19 isolates were found to possess positive activity for 1-aminocyclopropane-1-carboxylate (ACC) deaminase and nitrogen fixation. When the maize seeds inoculated with these 19 isolates were grown under normal conditions, four isolates‒TG-4 (Halomonas arcis), TG-8 (Marinococcus tarigensis), TG-12 (Halobacillus dabanensis), and TG-20 (Halomonas eurihalina)-significantly stimulated seedling growth and development. To evaluate the effect of these four isolates on salt tolerance, inoculated seeds were grown under various salt conditions (0.0, 75, 150, and 250 mM NaCl). The responses of plants to salt stress were analyzed by evaluating growth parameters, membrane damage, photosynthetic pigment and proline content, reactive oxygen species and lipid peroxidation levels, and antioxidant enzyme activities. According to the parameters, the results indicated that TG-4, TG-8, and TG-12, in particular, have the potential to function as plant growth-promoting rhizobacteria and effectively enhance salt stress tolerance in the maize seedlings. Overall, this research highlights the potential of halotolerant bacteria to improve salt stress tolerance in maize plants through multifaceted mechanisms, offering valuable insights for sustainable agriculture in saline environments.</p>\",\"PeriodicalId\":8853,\"journal\":{\"name\":\"Biologia futura\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2025-03-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biologia futura\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1007/s42977-025-00253-7\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biologia futura","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s42977-025-00253-7","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

本文章由计算机程序翻译,如有差异,请以英文原文为准。
Inoculating maize (Zea mays L.) seeds with halotolerant rhizobacteria from wild halophytes improves physiological and biochemical responses of seedlings to salt stress.

Salinity stress is a major environmental factor that poses a significant constraint to plant growth, threatening agricultural productivity and sustainability. This study investigated the potential of halotolerant bacteria, isolated from the rhizosphere of wild halotolerant plants in Turkey's Salt Lake basin, to enhance salt stress tolerance in maize (Zea mays L.). The rhizospheres of 17 different wild halotolerant plants were selected for bacterial isolation, resulting in the identification of 22 halotolerant bacteria using 16S rRNA sequence analysis. Among these, 19 isolates were found to possess positive activity for 1-aminocyclopropane-1-carboxylate (ACC) deaminase and nitrogen fixation. When the maize seeds inoculated with these 19 isolates were grown under normal conditions, four isolates‒TG-4 (Halomonas arcis), TG-8 (Marinococcus tarigensis), TG-12 (Halobacillus dabanensis), and TG-20 (Halomonas eurihalina)-significantly stimulated seedling growth and development. To evaluate the effect of these four isolates on salt tolerance, inoculated seeds were grown under various salt conditions (0.0, 75, 150, and 250 mM NaCl). The responses of plants to salt stress were analyzed by evaluating growth parameters, membrane damage, photosynthetic pigment and proline content, reactive oxygen species and lipid peroxidation levels, and antioxidant enzyme activities. According to the parameters, the results indicated that TG-4, TG-8, and TG-12, in particular, have the potential to function as plant growth-promoting rhizobacteria and effectively enhance salt stress tolerance in the maize seedlings. Overall, this research highlights the potential of halotolerant bacteria to improve salt stress tolerance in maize plants through multifaceted mechanisms, offering valuable insights for sustainable agriculture in saline environments.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Biologia futura
Biologia futura Agricultural and Biological Sciences-Agricultural and Biological Sciences (all)
CiteScore
3.50
自引率
0.00%
发文量
27
期刊介绍: How can the scientific knowledge we possess now influence that future? That is, the FUTURE of Earth and life − of humankind. Can we make choices in the present to change our future? How can 21st century biological research ask proper scientific questions and find solid answers? Addressing these questions is the main goal of Biologia Futura (formerly Acta Biologica Hungarica). In keeping with the name, the new mission is to focus on areas of biology where major advances are to be expected, areas of biology with strong inter-disciplinary connection and to provide new avenues for future research in biology. Biologia Futura aims to publish articles from all fields of biology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信