{"title":"产生具有任意方向轨道角动量的时空声涡","authors":"Shuai Liu, Hao Ge, Xiang-Yuan Xu, Yuan Sun, Xiao-Ping Liu, Ming-Hui Lu, Yan-Feng Chen","doi":"10.1038/s41467-025-58154-1","DOIUrl":null,"url":null,"abstract":"<p>Despite extensive exploration of acoustic vortices carrying orbital angular momentum (OAM), the generation of acoustic vortices with OAM orientations beyond the conventional longitudinal direction remains largely unexplored. Spatiotemporal (ST) vortices, featuring spiral phase twisting in the ST domain and carrying transverse OAM, have recently attracted considerable interest in optics and acoustics. Here, we report the generation of three-dimensional (3D) ST acoustic vortices with arbitrarily oriented OAM, thereby opening up a new dimension in acoustic OAM control. By utilizing a two-dimensional (2D) acoustic phased array, we introduce two approaches to manipulate the orientation of OAM: through the direct rotation of vortices in 3D space and the intersection of vortices carrying distinct types of OAM. These methods enable unprecedented control over the orientation of acoustic OAM, providing a new degree of freedom in the manipulation of acoustic waves. The arbitrarily oriented OAM may enable more complex particle manipulation techniques. Our work establishes a foundation for future explorations into the complex dynamics of novel structured acoustic fields in the ST domain.</p>","PeriodicalId":19066,"journal":{"name":"Nature Communications","volume":"183 1","pages":""},"PeriodicalIF":15.7000,"publicationDate":"2025-03-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Generation of spatiotemporal acoustic vortices with arbitrarily oriented orbital angular momentum\",\"authors\":\"Shuai Liu, Hao Ge, Xiang-Yuan Xu, Yuan Sun, Xiao-Ping Liu, Ming-Hui Lu, Yan-Feng Chen\",\"doi\":\"10.1038/s41467-025-58154-1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Despite extensive exploration of acoustic vortices carrying orbital angular momentum (OAM), the generation of acoustic vortices with OAM orientations beyond the conventional longitudinal direction remains largely unexplored. Spatiotemporal (ST) vortices, featuring spiral phase twisting in the ST domain and carrying transverse OAM, have recently attracted considerable interest in optics and acoustics. Here, we report the generation of three-dimensional (3D) ST acoustic vortices with arbitrarily oriented OAM, thereby opening up a new dimension in acoustic OAM control. By utilizing a two-dimensional (2D) acoustic phased array, we introduce two approaches to manipulate the orientation of OAM: through the direct rotation of vortices in 3D space and the intersection of vortices carrying distinct types of OAM. These methods enable unprecedented control over the orientation of acoustic OAM, providing a new degree of freedom in the manipulation of acoustic waves. The arbitrarily oriented OAM may enable more complex particle manipulation techniques. Our work establishes a foundation for future explorations into the complex dynamics of novel structured acoustic fields in the ST domain.</p>\",\"PeriodicalId\":19066,\"journal\":{\"name\":\"Nature Communications\",\"volume\":\"183 1\",\"pages\":\"\"},\"PeriodicalIF\":15.7000,\"publicationDate\":\"2025-03-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nature Communications\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://doi.org/10.1038/s41467-025-58154-1\",\"RegionNum\":1,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Communications","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41467-025-58154-1","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
Generation of spatiotemporal acoustic vortices with arbitrarily oriented orbital angular momentum
Despite extensive exploration of acoustic vortices carrying orbital angular momentum (OAM), the generation of acoustic vortices with OAM orientations beyond the conventional longitudinal direction remains largely unexplored. Spatiotemporal (ST) vortices, featuring spiral phase twisting in the ST domain and carrying transverse OAM, have recently attracted considerable interest in optics and acoustics. Here, we report the generation of three-dimensional (3D) ST acoustic vortices with arbitrarily oriented OAM, thereby opening up a new dimension in acoustic OAM control. By utilizing a two-dimensional (2D) acoustic phased array, we introduce two approaches to manipulate the orientation of OAM: through the direct rotation of vortices in 3D space and the intersection of vortices carrying distinct types of OAM. These methods enable unprecedented control over the orientation of acoustic OAM, providing a new degree of freedom in the manipulation of acoustic waves. The arbitrarily oriented OAM may enable more complex particle manipulation techniques. Our work establishes a foundation for future explorations into the complex dynamics of novel structured acoustic fields in the ST domain.
期刊介绍:
Nature Communications, an open-access journal, publishes high-quality research spanning all areas of the natural sciences. Papers featured in the journal showcase significant advances relevant to specialists in each respective field. With a 2-year impact factor of 16.6 (2022) and a median time of 8 days from submission to the first editorial decision, Nature Communications is committed to rapid dissemination of research findings. As a multidisciplinary journal, it welcomes contributions from biological, health, physical, chemical, Earth, social, mathematical, applied, and engineering sciences, aiming to highlight important breakthroughs within each domain.