Meihuan Liu, Hui Su, Xuanzhi Liu, Xiaorong He, Pengfei Tan, Feng Liu, Jun Pan
{"title":"氢氧镍/铂非均相界面电子重分布的动态调节促进了酸性氧还原反应","authors":"Meihuan Liu, Hui Su, Xuanzhi Liu, Xiaorong He, Pengfei Tan, Feng Liu, Jun Pan","doi":"10.1038/s41467-025-58193-8","DOIUrl":null,"url":null,"abstract":"<p>The interfacial electron interactions in heterogeneous catalysts are critical in determining the adsorption strengths and configurations of reaction intermediates, which are essential for the efficiency of multistep tandem catalytic processes. Amorphous-crystalline (a-c) heterostructures have garnered significant interest due to their unusual atomic arrangements, adaptable electron configurations, and exceptional stability. Here, we introduce a mesoporous a-c heterojunction catalyst featuring enriched amorphous-crystalline Ni(OH)<sub>2</sub>/Pt boundaries (ac-Ni(OH)<sub>2</sub>@m-Pt), designed for efficient acidic oxygen reduction reaction (ORR). This catalyst enables electron redistribution at the heterogeneous interface, thereby enhancing both catalytic activity and durability. As anticipated, the ac-Ni(OH)<sub>2</sub>@m-Pt delivers a high mass activity (MA) of 0.95 A mg<sub>Pt</sub><sup>−</sup><sup>1</sup> and maintains good durability (89.8% MA retention) over 15000 cycles. Advanced characterization and theoretical calculations reveal that the catalyst’s high performance stems from the dynamic heterogeneous-interface electron redistribution at the a-c interface. This dynamic-cycling electron transfer, driven by the applied potential, promotes O<sub>2</sub> activation and accelerates the protonation of *O intermediate during ORR. This work offers a promising avenue for improving the design of electrocatalysts using a-c interface engineering.</p>","PeriodicalId":19066,"journal":{"name":"Nature Communications","volume":"26 1","pages":""},"PeriodicalIF":15.7000,"publicationDate":"2025-03-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Dynamic modulation of electron redistribution at the heterogeneous interface nickel hydroxides/platinum boosts acidic oxygen reduction reaction\",\"authors\":\"Meihuan Liu, Hui Su, Xuanzhi Liu, Xiaorong He, Pengfei Tan, Feng Liu, Jun Pan\",\"doi\":\"10.1038/s41467-025-58193-8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The interfacial electron interactions in heterogeneous catalysts are critical in determining the adsorption strengths and configurations of reaction intermediates, which are essential for the efficiency of multistep tandem catalytic processes. Amorphous-crystalline (a-c) heterostructures have garnered significant interest due to their unusual atomic arrangements, adaptable electron configurations, and exceptional stability. Here, we introduce a mesoporous a-c heterojunction catalyst featuring enriched amorphous-crystalline Ni(OH)<sub>2</sub>/Pt boundaries (ac-Ni(OH)<sub>2</sub>@m-Pt), designed for efficient acidic oxygen reduction reaction (ORR). This catalyst enables electron redistribution at the heterogeneous interface, thereby enhancing both catalytic activity and durability. As anticipated, the ac-Ni(OH)<sub>2</sub>@m-Pt delivers a high mass activity (MA) of 0.95 A mg<sub>Pt</sub><sup>−</sup><sup>1</sup> and maintains good durability (89.8% MA retention) over 15000 cycles. Advanced characterization and theoretical calculations reveal that the catalyst’s high performance stems from the dynamic heterogeneous-interface electron redistribution at the a-c interface. This dynamic-cycling electron transfer, driven by the applied potential, promotes O<sub>2</sub> activation and accelerates the protonation of *O intermediate during ORR. This work offers a promising avenue for improving the design of electrocatalysts using a-c interface engineering.</p>\",\"PeriodicalId\":19066,\"journal\":{\"name\":\"Nature Communications\",\"volume\":\"26 1\",\"pages\":\"\"},\"PeriodicalIF\":15.7000,\"publicationDate\":\"2025-03-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nature Communications\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://doi.org/10.1038/s41467-025-58193-8\",\"RegionNum\":1,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Communications","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41467-025-58193-8","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0
摘要
非均相催化剂的界面电子相互作用是决定反应中间体吸附强度和构型的关键,对多步串联催化过程的效率至关重要。非晶(a-c)异质结构由于其不同寻常的原子排列、可适应的电子构型和特殊的稳定性而引起了人们的极大兴趣。在这里,我们介绍了一种介孔a-c异质结催化剂,具有丰富的非晶Ni(OH)2/Pt边界(ac-Ni(OH)2@m-Pt),设计用于高效的酸性氧还原反应(ORR)。这种催化剂使电子在异相界面重新分布,从而提高催化活性和耐久性。正如预期的那样,ac-Ni(OH)2@m-Pt提供了0.95 a mgPt - 1的高质量活性(MA),并在15000次循环中保持良好的耐久性(89.8% MA保留)。先进的表征和理论计算表明,催化剂的高性能源于在ac -c界面上的动态异质界面电子重分布。这种由外加电位驱动的动态循环电子转移促进了氧的活化,加速了ORR过程中*O中间体的质子化。这项工作为利用ac -c界面工程改进电催化剂的设计提供了一条有希望的途径。
Dynamic modulation of electron redistribution at the heterogeneous interface nickel hydroxides/platinum boosts acidic oxygen reduction reaction
The interfacial electron interactions in heterogeneous catalysts are critical in determining the adsorption strengths and configurations of reaction intermediates, which are essential for the efficiency of multistep tandem catalytic processes. Amorphous-crystalline (a-c) heterostructures have garnered significant interest due to their unusual atomic arrangements, adaptable electron configurations, and exceptional stability. Here, we introduce a mesoporous a-c heterojunction catalyst featuring enriched amorphous-crystalline Ni(OH)2/Pt boundaries (ac-Ni(OH)2@m-Pt), designed for efficient acidic oxygen reduction reaction (ORR). This catalyst enables electron redistribution at the heterogeneous interface, thereby enhancing both catalytic activity and durability. As anticipated, the ac-Ni(OH)2@m-Pt delivers a high mass activity (MA) of 0.95 A mgPt−1 and maintains good durability (89.8% MA retention) over 15000 cycles. Advanced characterization and theoretical calculations reveal that the catalyst’s high performance stems from the dynamic heterogeneous-interface electron redistribution at the a-c interface. This dynamic-cycling electron transfer, driven by the applied potential, promotes O2 activation and accelerates the protonation of *O intermediate during ORR. This work offers a promising avenue for improving the design of electrocatalysts using a-c interface engineering.
期刊介绍:
Nature Communications, an open-access journal, publishes high-quality research spanning all areas of the natural sciences. Papers featured in the journal showcase significant advances relevant to specialists in each respective field. With a 2-year impact factor of 16.6 (2022) and a median time of 8 days from submission to the first editorial decision, Nature Communications is committed to rapid dissemination of research findings. As a multidisciplinary journal, it welcomes contributions from biological, health, physical, chemical, Earth, social, mathematical, applied, and engineering sciences, aiming to highlight important breakthroughs within each domain.