高重复率和高能超短激光脉冲:阿秒光谱的下一个光源

IF 6.7 1区 物理与天体物理 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY
Yuan Kang, Xuhan Wang, Longhua Tang, Xu Liu, Xiaochun Gong
{"title":"高重复率和高能超短激光脉冲:阿秒光谱的下一个光源","authors":"Yuan Kang, Xuhan Wang, Longhua Tang, Xu Liu, Xiaochun Gong","doi":"10.1021/acsphotonics.4c01896","DOIUrl":null,"url":null,"abstract":"The ultrashort femtosecond laser pulse techniques in Ti:Sapphire laser systems advanced the development of attosecond pulse generation and associated attosecond metrology in probing attosecond time-resolved electron motion in atoms, molecules, and condensed matter. However, the limitation of its average power, repetition rate, and pulse energy leads to a bottleneck in developing high-flux and high-energy attosecond light sources. The recent breakthroughs in nonlinear spectral broadening have unlocked the potential for extending Yb-doped lasers to generate high-flux and high-repetition-rate attosecond extreme ultraviolet (EUV) pulses. Here, we briefly summarized the development of postpulse compression methods of the multithin plate (MTP) and multipass cell (MPC), which have shown significant advancements in achieving a high-average-power ultrafast laser. The advanced ultrafast light sources provide more choices on the applications for fundamental research within extreme temporal and spectral scales, of which the advantages are paving the way for novel discoveries in ultrafast science and promoting the research in attosecond coincidence spectroscopy, tabletop attosecond soft X-ray spectroscopy, and attosecond EUV nanoimaging and, consequently, opening the avenue to realize a breakthrough in zeptosecond time resolution and even zeptosecond pulse generation.","PeriodicalId":23,"journal":{"name":"ACS Photonics","volume":"6 1","pages":""},"PeriodicalIF":6.7000,"publicationDate":"2025-03-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"High Repetition Rate and High Energy Ultrashort Laser Pulse: The Next Light Source for Attosecond Spectroscopy\",\"authors\":\"Yuan Kang, Xuhan Wang, Longhua Tang, Xu Liu, Xiaochun Gong\",\"doi\":\"10.1021/acsphotonics.4c01896\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The ultrashort femtosecond laser pulse techniques in Ti:Sapphire laser systems advanced the development of attosecond pulse generation and associated attosecond metrology in probing attosecond time-resolved electron motion in atoms, molecules, and condensed matter. However, the limitation of its average power, repetition rate, and pulse energy leads to a bottleneck in developing high-flux and high-energy attosecond light sources. The recent breakthroughs in nonlinear spectral broadening have unlocked the potential for extending Yb-doped lasers to generate high-flux and high-repetition-rate attosecond extreme ultraviolet (EUV) pulses. Here, we briefly summarized the development of postpulse compression methods of the multithin plate (MTP) and multipass cell (MPC), which have shown significant advancements in achieving a high-average-power ultrafast laser. The advanced ultrafast light sources provide more choices on the applications for fundamental research within extreme temporal and spectral scales, of which the advantages are paving the way for novel discoveries in ultrafast science and promoting the research in attosecond coincidence spectroscopy, tabletop attosecond soft X-ray spectroscopy, and attosecond EUV nanoimaging and, consequently, opening the avenue to realize a breakthrough in zeptosecond time resolution and even zeptosecond pulse generation.\",\"PeriodicalId\":23,\"journal\":{\"name\":\"ACS Photonics\",\"volume\":\"6 1\",\"pages\":\"\"},\"PeriodicalIF\":6.7000,\"publicationDate\":\"2025-03-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Photonics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1021/acsphotonics.4c01896\",\"RegionNum\":1,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Photonics","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1021/acsphotonics.4c01896","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

钛蓝宝石激光系统中的超短飞秒激光脉冲技术促进了阿秒脉冲产生和相关的阿秒计量在探测原子、分子和凝聚态物质中阿秒时间分辨电子运动方面的发展。然而,其平均功率、重复频率和脉冲能量的限制导致了高通量高能阿秒光源的发展瓶颈。近年来在非线性光谱展宽方面的突破,开启了将掺镱激光器扩展到产生高通量和高重复率的阿秒极紫外(EUV)脉冲的潜力。本文简要总结了多薄板(MTP)和多通电池(MPC)的脉冲后压缩方法的发展,这些方法在实现高平均功率超快激光方面取得了重大进展。先进的超快光源为极端时间和光谱尺度下的基础研究提供了更多的应用选择,其优势在于为超快科学的新发现铺平了道路,促进了阿秒重合光谱学、桌面阿秒软x射线光谱学、阿秒EUV纳米成像等领域的研究。为实现zepto秒时间分辨率乃至zepto秒脉冲产生的突破开辟了道路。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

High Repetition Rate and High Energy Ultrashort Laser Pulse: The Next Light Source for Attosecond Spectroscopy

High Repetition Rate and High Energy Ultrashort Laser Pulse: The Next Light Source for Attosecond Spectroscopy
The ultrashort femtosecond laser pulse techniques in Ti:Sapphire laser systems advanced the development of attosecond pulse generation and associated attosecond metrology in probing attosecond time-resolved electron motion in atoms, molecules, and condensed matter. However, the limitation of its average power, repetition rate, and pulse energy leads to a bottleneck in developing high-flux and high-energy attosecond light sources. The recent breakthroughs in nonlinear spectral broadening have unlocked the potential for extending Yb-doped lasers to generate high-flux and high-repetition-rate attosecond extreme ultraviolet (EUV) pulses. Here, we briefly summarized the development of postpulse compression methods of the multithin plate (MTP) and multipass cell (MPC), which have shown significant advancements in achieving a high-average-power ultrafast laser. The advanced ultrafast light sources provide more choices on the applications for fundamental research within extreme temporal and spectral scales, of which the advantages are paving the way for novel discoveries in ultrafast science and promoting the research in attosecond coincidence spectroscopy, tabletop attosecond soft X-ray spectroscopy, and attosecond EUV nanoimaging and, consequently, opening the avenue to realize a breakthrough in zeptosecond time resolution and even zeptosecond pulse generation.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACS Photonics
ACS Photonics NANOSCIENCE & NANOTECHNOLOGY-MATERIALS SCIENCE, MULTIDISCIPLINARY
CiteScore
11.90
自引率
5.70%
发文量
438
审稿时长
2.3 months
期刊介绍: Published as soon as accepted and summarized in monthly issues, ACS Photonics will publish Research Articles, Letters, Perspectives, and Reviews, to encompass the full scope of published research in this field.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信