Wanqing Song, Zhenzhuang Wen, Xin Wang, Kunyan Qian, Tao Zhang, Haozhi Wang, Jia Ding, Wenbin Hu
{"title":"铁单原子位的不饱和程度影响钠硫电池中多硫化物的行为","authors":"Wanqing Song, Zhenzhuang Wen, Xin Wang, Kunyan Qian, Tao Zhang, Haozhi Wang, Jia Ding, Wenbin Hu","doi":"10.1038/s41467-025-58114-9","DOIUrl":null,"url":null,"abstract":"<p>Sodium | |sulfur batteries hold great promise for grid-scale energy storage, yet their performance is hindered by the shuttling and sluggish redox of sulfur species. Herein, we report a strategic design of sulfur hosts modified with coordinatively unsaturated iron single-atom (Fe‒N<sub><i>x</i></sub>) for sodium | |sulfur batteries. Utilizing theoretical calculations, geometric descriptor <i>γ</i> (<i>l</i><sub>Na‒S</sub>/<i>l</i><sub>Fe‒N</sub>) and electronic descriptor <i>φ</i> (<i>e</i><sub>g</sub> /<i>t</i><sub>2g</sub>) simultaneously correlated with the unsaturation degree of Fe‒N<sub><i>x</i></sub> site are proposed. A negative correlation between <i>γ</i> and the adsorption strength of sodium polysulfides, along with a positive correlation between <i>φ</i> and the decomposition capability of Na<sub>2</sub>S are established. The Fe‒N<sub>1</sub> sites, with the minimum <i>γ</i> and maximum <i>φ</i> values, are identified as the optimal functional species for optimizing polysulfides behaviors. Sodium | |sulfur batteries utilizing Fe‒N<sub>1</sub> /S positive electrodes deliver improved sulfur utilization (81.4% at 167.5 mA g<sup>‒1</sup>), sustained rate performance (1003.0 mAh g<sup>‒1</sup> at 1675 mA g<sup>‒1</sup>), and stable cycling (83.5% retention over 450 cycles at 3350 mA g<sup>‒1</sup>). Moreover, Fe‒N<sub>1</sub>/S positive electrodes enable sodium | |sulfur pouch cells to deliver a sulfur utilization of 77.4% (1296.9 mAh g<sup>‒1</sup>) at 0.1 A g<sup>‒1</sup>. Our work offers a strategy for designing high-activity, fast redox sulfur positive electrodes and validates the practical potential of sodium | |sulfur batteries.</p>","PeriodicalId":19066,"journal":{"name":"Nature Communications","volume":"183 1","pages":""},"PeriodicalIF":15.7000,"publicationDate":"2025-03-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Unsaturation degree of Fe single atom site manipulates polysulfide behavior in sodium-sulfur batteries\",\"authors\":\"Wanqing Song, Zhenzhuang Wen, Xin Wang, Kunyan Qian, Tao Zhang, Haozhi Wang, Jia Ding, Wenbin Hu\",\"doi\":\"10.1038/s41467-025-58114-9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Sodium | |sulfur batteries hold great promise for grid-scale energy storage, yet their performance is hindered by the shuttling and sluggish redox of sulfur species. Herein, we report a strategic design of sulfur hosts modified with coordinatively unsaturated iron single-atom (Fe‒N<sub><i>x</i></sub>) for sodium | |sulfur batteries. Utilizing theoretical calculations, geometric descriptor <i>γ</i> (<i>l</i><sub>Na‒S</sub>/<i>l</i><sub>Fe‒N</sub>) and electronic descriptor <i>φ</i> (<i>e</i><sub>g</sub> /<i>t</i><sub>2g</sub>) simultaneously correlated with the unsaturation degree of Fe‒N<sub><i>x</i></sub> site are proposed. A negative correlation between <i>γ</i> and the adsorption strength of sodium polysulfides, along with a positive correlation between <i>φ</i> and the decomposition capability of Na<sub>2</sub>S are established. The Fe‒N<sub>1</sub> sites, with the minimum <i>γ</i> and maximum <i>φ</i> values, are identified as the optimal functional species for optimizing polysulfides behaviors. Sodium | |sulfur batteries utilizing Fe‒N<sub>1</sub> /S positive electrodes deliver improved sulfur utilization (81.4% at 167.5 mA g<sup>‒1</sup>), sustained rate performance (1003.0 mAh g<sup>‒1</sup> at 1675 mA g<sup>‒1</sup>), and stable cycling (83.5% retention over 450 cycles at 3350 mA g<sup>‒1</sup>). Moreover, Fe‒N<sub>1</sub>/S positive electrodes enable sodium | |sulfur pouch cells to deliver a sulfur utilization of 77.4% (1296.9 mAh g<sup>‒1</sup>) at 0.1 A g<sup>‒1</sup>. Our work offers a strategy for designing high-activity, fast redox sulfur positive electrodes and validates the practical potential of sodium | |sulfur batteries.</p>\",\"PeriodicalId\":19066,\"journal\":{\"name\":\"Nature Communications\",\"volume\":\"183 1\",\"pages\":\"\"},\"PeriodicalIF\":15.7000,\"publicationDate\":\"2025-03-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nature Communications\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://doi.org/10.1038/s41467-025-58114-9\",\"RegionNum\":1,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Communications","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41467-025-58114-9","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0
摘要
钠b|硫电池在电网规模储能方面具有很大的前景,但其性能受到硫离子穿梭和缓慢氧化还原的阻碍。在此,我们报道了用配位不饱和铁单原子(Fe-Nx)修饰钠| |硫电池的硫宿主的策略设计。利用理论计算,提出了几何描述子γ (lNa-S / lFe-N)和电子描述子φ (eg /t2g)同时与Fe-Nx位点的不饱和度相关。结果表明,γ与聚硫化钠的吸附强度呈负相关,φ与Na2S的分解能力呈正相关。具有最小γ值和最大φ值的Fe-N1位点是优化多硫化物行为的最优功能基团。使用Fe-N1 /S正极的钠| |硫电池可以提高硫利用率(在167.5 mA g-1时达到81.4%),持续的倍率性能(在1675 mA g-1时达到1003.0 mAh g-1),并且循环稳定(在3350 mA g-1时超过450次循环保持83.5%)。此外,Fe-N1 /S正极使钠| |硫袋电池在0.1 a g-1下的硫利用率达到77.4% (1296.9 mAh g-1)。我们的工作为设计高活性、快速氧化还原硫正极提供了一种策略,并验证了钠| |硫电池的实用潜力。
Unsaturation degree of Fe single atom site manipulates polysulfide behavior in sodium-sulfur batteries
Sodium | |sulfur batteries hold great promise for grid-scale energy storage, yet their performance is hindered by the shuttling and sluggish redox of sulfur species. Herein, we report a strategic design of sulfur hosts modified with coordinatively unsaturated iron single-atom (Fe‒Nx) for sodium | |sulfur batteries. Utilizing theoretical calculations, geometric descriptor γ (lNa‒S/lFe‒N) and electronic descriptor φ (eg /t2g) simultaneously correlated with the unsaturation degree of Fe‒Nx site are proposed. A negative correlation between γ and the adsorption strength of sodium polysulfides, along with a positive correlation between φ and the decomposition capability of Na2S are established. The Fe‒N1 sites, with the minimum γ and maximum φ values, are identified as the optimal functional species for optimizing polysulfides behaviors. Sodium | |sulfur batteries utilizing Fe‒N1 /S positive electrodes deliver improved sulfur utilization (81.4% at 167.5 mA g‒1), sustained rate performance (1003.0 mAh g‒1 at 1675 mA g‒1), and stable cycling (83.5% retention over 450 cycles at 3350 mA g‒1). Moreover, Fe‒N1/S positive electrodes enable sodium | |sulfur pouch cells to deliver a sulfur utilization of 77.4% (1296.9 mAh g‒1) at 0.1 A g‒1. Our work offers a strategy for designing high-activity, fast redox sulfur positive electrodes and validates the practical potential of sodium | |sulfur batteries.
期刊介绍:
Nature Communications, an open-access journal, publishes high-quality research spanning all areas of the natural sciences. Papers featured in the journal showcase significant advances relevant to specialists in each respective field. With a 2-year impact factor of 16.6 (2022) and a median time of 8 days from submission to the first editorial decision, Nature Communications is committed to rapid dissemination of research findings. As a multidisciplinary journal, it welcomes contributions from biological, health, physical, chemical, Earth, social, mathematical, applied, and engineering sciences, aiming to highlight important breakthroughs within each domain.